Affiliation:
1. Mathematics & Science College , Shanghai Normal University , 100 Guilin Road , Shanghai 200234 , P. R. China
2. School of Mathematical Sciences , University of Science and Technology of China , 96 Jinzhai Road Baohe District , Hefei , Anhui 230026 , P. R. China
Abstract
Abstract
We consider a Cahn–Hilliard equation in a bounded domain Ω in
ℝ
n
{\mathbb{R}^{n}}
over a time interval
(
0
,
T
)
{(0,T)}
and discuss the backward problem in time of determining intermediate data
u
(
x
,
θ
)
{u(x,\theta)}
,
θ
∈
(
0
,
T
)
{\theta\in(0,T)}
,
x
∈
Ω
{x\in\Omega}
from the measurement of the final data
u
(
x
,
T
)
{u(x,T)}
,
x
∈
Ω
{x\in\Omega}
. Under suitable a priori boundness assumptions on the solutions
u
(
x
,
t
)
{u(x,t)}
, we prove a conditional stability estimate for the semilinear Cahn–Hilliard equation
∥
u
(
⋅
,
θ
)
∥
L
2
(
Ω
)
≤
C
∥
u
(
⋅
,
T
)
∥
H
2
(
Ω
)
κ
0
,
\lVert u(\,\cdot\,,\theta)\rVert_{L^{2}(\Omega)}\leq C\lVert u(\,\cdot\,,T)%
\rVert_{H^{2}(\Omega)}^{\kappa_{0}},
and a conditional stability estimate for the linear Cahn–Hilliard equation
∥
u
(
⋅
,
θ
)
∥
H
β
(
Ω
)
≤
C
∥
u
(
⋅
,
T
)
∥
H
2
(
Ω
)
κ
1
,
\lVert u(\,\cdot\,,\theta)\rVert_{H^{\beta}(\Omega)}\leq C\lVert u(\,\cdot\,,T%
)\rVert_{H^{2}(\Omega)}^{\kappa_{1}},
where
θ
∈
(
0
,
T
)
{\theta\in(0,T)}
,
β
∈
(
0
,
4
)
{\beta\in(0,4)}
and
κ
0
,
κ
1
∈
(
0
,
1
)
{\kappa_{0},\kappa_{1}\in(0,1)}
. The proof is based on a Carleman estimate with the weight function
e
2
s
e
λ
t
{\mathrm{e}^{2s\mathrm{e}^{\lambda t}}}
with large parameters
s
,
λ
∈
ℝ
+
{s,\lambda\in\mathbb{R}^{+}}
.
Funder
National Natural Science Foundation of China
Reference40 articles.
1. S. Agmon and L. Nirenberg,
Properties of solutions of ordinary differential equations in Banach space,
Comm. Pure Appl. Math. 16 (1963), 121–239.
2. K. A. Ames and B. Straughan,
Non-Standard and Improperly Posed Problems,
Academic Press, San Diego, 1997.
3. M. F. Al-Jamal,
A backward problem for the time-fractional diffusion equation,
Math. Methods Appl. Sci. 40 (2017), no. 7, 2466–2474.
4. V. V. Au and N. H. Tuan,
Identification of the initial condition in backward problem with nonlinear diffusion and reaction,
J. Math. Anal. Appl. 452 (2017), no. 1, 176–187.
5. L. Baudouin, E. Cerpa, E. Crépeau and A. Mercado,
Lipschitz stability in an inverse problem for the Kuramoto–Sivashinsky equation,
Appl. Anal. 92 (2013), no. 10, 2084–2102.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献