Abstract
AbstractUnder the assumption that the solution of a linear operator equation is presented in the form of a sum of several components with various smoothness properties, a modified Tikhonov regularization method is studied. The stabilizer of this method is the sum of three functionals, where each one corresponds to only one component. Each such functional is either the total variation of a function or the total variation of its derivative. For every component, the convergence of approximate solutions in a corresponding normed space is proved and a general discrete approximation scheme for the regularizing algorithm is justified.
Funder
Russian Foundation for Basic Research
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献