Lipschitz continuity of the Fréchet gradient in an inverse coefficient problem for a parabolic equation with Dirichlet measured output

Author:

Hasanov Alemdar1

Affiliation:

1. Kocaeli Universitesi , Izmir , Turkey

Abstract

Abstract This paper studies the Lipschitz continuity of the Fréchet gradient of the Tikhonov functional J ( k ) := ( 1 / 2 ) u ( 0 , ; k ) - f L 2 ( 0 , T ) 2 {J(k):=(1/2)\lVert u(0,\cdot\,;k)-f\rVert^{2}_{L^{2}(0,T)}} corresponding to an inverse coefficient problem for the 1 D {1D} parabolic equation u t = ( k ( x ) u x ) x {u_{t}=(k(x)u_{x})_{x}} with the Neumann boundary conditions - k ( 0 ) u x ( 0 , t ) = g ( t ) {-k(0)u_{x}(0,t)=g(t)} and u x ( l , t ) = 0 {u_{x}(l,t)=0} . In addition, compactness and Lipschitz continuity of the input-output operator Φ [ k ] := u ( x , t ; k ) | x = 0 + , Φ [ ] : 𝒦 H 1 ( 0 , l ) H 1 ( 0 , T ) , \Phi[k]:=u(x,t;k)\lvert_{x=0^{+}},\quad\Phi[\,\cdot\,]:\mathcal{K}\subset H^{1% }(0,l)\mapsto H^{1}(0,T), as well as solvability of the regularized inverse problem and the Lipschitz continuity of the Fréchet gradient of the Tikhonov functional are proved. Furthermore, relationships between the sufficient conditions for the Lipschitz continuity of the Fréchet gradient and the regularity of the weak solution of the direct problem as well as the measured output f ( t ) := u ( 0 , t ; k ) {f(t):=u(0,t;k)} are established. One of the derived lemmas also introduces a useful application of the Lipschitz continuity of the Fréchet gradient. This lemma shows that an important advantage of gradient methods comes when dealing with the functionals of class C 1 , 1 ( 𝒦 ) {C^{1,1}(\mathcal{K})} . Specifically, this lemma asserts that if J C 1 , 1 ( 𝒦 ) {J\in C^{1,1}(\mathcal{K})} and { k ( n ) } 𝒦 {\{k^{(n)}\}\subset\mathcal{K}} is the sequence of iterations obtained by the Landweber iteration algorithm k ( n + 1 ) = k ( n ) + ω n J ( k ( n ) ) {k^{(n+1)}=k^{(n)}+\omega_{n}J^{\prime}(k^{(n)})} , then for ω n ( 0 , 2 / L g ) {\omega_{n}\in(0,2/L_{g})} , where L g > 0 {L_{g}>0} is the Lipschitz constant, the sequence { J ( k ( n ) ) } {\{J(k^{(n)})\}} is monotonically decreasing and lim n J ( k ( n ) ) = 0 {\lim_{n\to\infty}\lVert J^{\prime}(k^{(n)})\rVert=0} .

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics

Reference11 articles.

1. R. Bellman, Asymptotic series for the solutions of linear differential-difference equations, Rend. Circ. Mat. Palermo (2) 7 (1958), 261–269.

2. J. R. Cannon and P. DuChateau, An inverse problem for a nonlinear diffusion equation, SIAM J. Appl. Math. 39 (1980), no. 2, 272–289.

3. P. DuChateau, Monotonicity and invertibility of coefficient-to-data mappings for parabolic inverse problems, SIAM J. Math. Anal. 26 (1995), no. 6, 1473–1487.

4. H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Math. Appl. 375, Kluwer Academic Publishers, Dordrecht, 1996.

5. L. C. Evans, Partial differential equations, 2nd ed., Grad. Stud. Math. 19, American Mathematical Society, Providence, 2010.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3