A numerical method for an inverse source problem for parabolic equations and its application to a coefficient inverse problem
Author:
Affiliation:
1. Department of Mathematics and Statistics, University of North Carolina Charlotte, Charlotte, NC, 28233, USA
Abstract
Publisher
Walter de Gruyter GmbH
Subject
Applied Mathematics
Link
https://www.degruyter.com/document/doi/10.1515/jiip-2019-0026/pdf
Reference78 articles.
1. The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medium;SIAM J. Sci. Comput.,2007/08
2. Determination of forcing functions in the wave equation. Part I: The space-dependent case;J. Engrg. Math.,2016
3. Analysis of a quasi-reversibility method for a terminal value quasi-linear parabolic problem with measurements;SIAM J. Math. Anal.,2019
4. Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems;J. Inverse Ill-Posed Probl.,2013
5. Simultaneous reconstruction of the perfusion coefficient and initial temperature from time-average integral temperature measurements;Appl. Math. Model.,2019
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Carleman-Newton method to globally reconstruct the initial condition for nonlinear parabolic equations;Journal of Computational and Applied Mathematics;2024-08
2. The time dimensional reduction method to determine the initial conditions without the knowledge of damping coefficients;Computers & Mathematics with Applications;2024-07
3. Identification of an Inverse Source Problem in a Fractional Partial Differential Equation Based on Sinc-Galerkin Method and TSVD Regularization;Computational Methods in Applied Mathematics;2023-06-06
4. The Carleman Contraction Mapping Method for Quasilinear Elliptic Equations with Over-determined Boundary Data;Acta Mathematica Vietnamica;2023-04-20
5. Carleman estimates and some inverse problems for the coupled quantitative thermoacoustic equations by partial boundary layer data. Part II: Some inverse problems;Mathematical Methods in the Applied Sciences;2023-04-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3