Inverse source problem for a distributed-order time fractional diffusion equation

Author:

Cheng Xiaoliang1,Yuan Lele1,Liang Kewei1

Affiliation:

1. School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China

Abstract

AbstractThis paper studies an inverse source problem for a time fractional diffusion equation with the distributed order Caputo derivative. The space-dependent source term is recovered from a noisy final data. The uniqueness, ill-posedness and a conditional stability for this inverse source problem are obtained. The inverse problem is formulated into a minimization functional with Tikhonov regularization method. Further, based on the series representation of the regularized solution, we give convergence rates of the regularized solution under an a-priori and an a-posteriori regularization parameter choice rule. With an adjoint technique for computing the gradient of the regularization functional, the conjugate gradient method is applied to reconstruct the space-dependent source term. Two numerical examples illustrate the effectiveness of the proposed method.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics

Reference68 articles.

1. Theory and simulation of time-fractional fluid diffusion in porous media;J. Phys. A,2013

2. Estimates for a general fractional relaxation equation and application to an inverse source problem;Math. Methods Appl. Sci.,2018

3. Finite difference/finite element methods for distributed-order time fractional diffusion equations;J. Sci. Comput.,2017

4. Inverse source problem for a fractional diffusion equation;Inverse Problems,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3