Cauchy difference priors for edge-preserving Bayesian inversion

Author:

Markkanen Markku1,Roininen Lassi2,Huttunen Janne M. J.3,Lasanen Sari2

Affiliation:

1. Eigenor Corporation, Lompolontie 1, 99600Sodankylä, Finland

2. School of Engineering Science, Lappeenranta-Lahti University of Technology, Skinnarilankatu 34, FI-53850Lappeenranta, Finland

3. Nokia Bell Laboratories, Karakaari 13, 02610Espoo, Finland

Abstract

AbstractWe consider inverse problems in which the unknown target includes sharp edges, for example interfaces between different materials. Such problems are typical in image reconstruction, tomography, and other inverse problems algorithms. A common solution for edge-preserving inversion is to use total variation (TV) priors. However, as shown by Lassas and Siltanen 2004, TV-prior is not discretization-invariant: the edge-preserving property is lost when the computational mesh is made denser and denser. In this paper we propose another class of priors for edge-preserving Bayesian inversion, the Cauchy difference priors. We construct Cauchy priors starting from continuous one-dimensional Cauchy motion, and show that its discretized version, Cauchy random walk, can be used as a non-Gaussian prior for edge-preserving Bayesian inversion. We generalize the methodology to two-dimensional Cauchy fields, and briefly consider a generalization of the Cauchy priors to Lévy α-stable random field priors. We develop a suitable posterior distribution sampling algorithm for conditional mean estimates with single-component Metropolis–Hastings. We apply the methodology to one-dimensional deconvolution and two-dimensional X-ray tomography problems.

Funder

Engineering and Physical Sciences Research Council

Luonnontieteiden ja Tekniikan Tutkimuksen Toimikunta

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics

Reference82 articles.

1. Well-posed Bayesian inverse problems and heavy-tailed stable quasi-Banach space priors;Inverse Probl. Imaging,2017

2. Hierarchical Bayesian level set inversion;Stat. Comput.,2017

3. Statistical X-ray tomography using empirical Besov priors;Int. J. Tomogr. Stat.,2009

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3