Author:
Gerth Daniel,Klann Esther,Ramlau Ronny,Reichel Lothar
Abstract
AbstractIt is well known that Tikhonov regularization in standard form may determine approximate solutions that are too smooth, i.e., the approximate solution may lack many details that the desired exact solution might possess. Two different approaches, both referred to as fractional Tikhonov methods have been introduced to remedy this shortcoming. This paper investigates the convergence properties of these methods by reviewing results published previously by various authors. We show that both methods are order optimal when the regularization parameter is chosen according to the discrepancy principle. The theory developed suggests situations in which the fractional methods yield approximate solutions of higher quality than Tikhonov regularization in standard form. Computed examples that illustrate the behavior of the methods are presented.
Funder
Austrian Science Fund (FWF)
NSF
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献