On ill-posedness concepts, stable solvability and saturation

Author:

Hofmann Bernd1,Plato Robert2

Affiliation:

1. Faculty of Mathematics, Chemnitz University of Technology, 09107Chemnitz, Germany

2. Department of Mathematics, University of Siegen, Walter-Flex-Str. 3, 57068Siegen, Germany

Abstract

AbstractWe consider different concepts of well-posedness and ill-posedness and their relations for solving nonlinear and linear operator equations in Hilbert spaces. First, the concepts of Hadamard and Nashed are recalled which are appropriate for linear operator equations. For nonlinear operator equations, stable respective unstable solvability is considered, and the properties of local well-posedness and ill-posedness are investigated. Those two concepts consider stability in image space and solution space, respectively, and both seem to be appropriate concepts for nonlinear operators which are not onto and/or not, locally or globally, injective. Several example situations for nonlinear problems are considered, including the prominent autoconvolution problems and other quadratic equations in Hilbert spaces. It turns out that for linear operator equations, well-posedness and ill-posedness are global properties valid for all possible solutions, respectively. The special role of the nullspace is pointed out in this case. Finally, non-injectivity also causes differences in the saturation behavior of Tikhonov and Lavrentiev regularization of linear ill-posed equations. This is examined at the end of this study.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics

Reference62 articles.

1. About a deficit in low-order convergence rates on the example of autoconvolution;Appl. Anal.,2015

2. Regularizability of ill-posed problems and the modulus of continuity;Z. Anal. Anwend.,2013

3. Modulus of continuity of Nemytskiĭ operators with application to the problem of option pricing;J. Inverse Ill-Posed Probl.,2008

4. On inversion rates for the autoconvolution equation;Inverse Problems,1996

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3