A mixed effects multinomial logistic-normal model for forecasting baseball performance

Author:

Gerber Eric A. E.1,Craig Bruce A.2

Affiliation:

1. Department of Mathematics , California State University Bakersfield , Bakersfield , CA , USA

2. Department of Statistics , Purdue University , West Lafayette , IN , USA

Abstract

Abstract Prediction of player performance is a key component in the construction of baseball team rosters. As a result, most prediction models are the proprietary property of team or industrial sports entities, and little is known about them. Of those models that have been published, the main focus has been to separately model each outcome with nearly no emphasis on uncertainty quantification. This research introduces a joint modeling approach to predict seasonal plate appearance outcome vectors using a mixed-effects multinomial logistic-normal model. This model accounts for positive and negative correlations between outcomes, both across and within player seasons, and provides a joint posterior predictive outcome distribution from which uncertainty can be quantified. It is applied to the important, yet unaddressed, problem of predicting performance for players moving between the Japanese (NPB) and American (MLB) major leagues.

Publisher

Walter de Gruyter GmbH

Subject

Decision Sciences (miscellaneous),Social Sciences (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic prediction of the National Hockey League draft with rank-ordered logit models;International Journal of Forecasting;2024-10

2. A Model for Predicting Physical Health of College Students Based on Semantic Web and Deep Learning Under Cloud Edge Collaborative Architecture;International Journal on Semantic Web and Information Systems;2024-03-12

3. Residuals and diagnostics for multinomial regression models;Statistical Analysis and Data Mining: The ASA Data Science Journal;2023-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3