Synthesis of vitamin E succinate catalyzed by nano-SiO2 immobilized DMAP derivative in mixed solvent system

Author:

Chen Dan,Li Binglin,Li Bin,Zhang Xiaoli,Wei Longhui,Zheng Wenwen

Abstract

Abstract Catalytic efficiency in synthesis of vitamin E succinate was dramatically increased via the preparation of robust catalyst and the improvement of reaction system. 4-dimethylaminopyridine (DMAP) was covalently immobilized on nano-SiO2 to avoid the catalyst contamination of the product and permit the easy recycling of DMAP. Then, a hexane-acetone mixed solvent system was firstly introduced to replace the traditional single-solvent system, which was employed to improve the activity of immobilized DMAP derivative and the substrate solubility of the reaction system. The highest vitamin E succinate yield of 94% was achieved. In addition, the recyclability and stability of the immobilized DMAP derivative was excellent, the yield of vitamin E succinate had no obvious loss and remained 90% after recycling 20 times. The excellent results make this technology be a promising candidate for the industrial production of vitamin E succinate.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3