Simultaneous different mechanisms for the efficient synthesis of β-enaminones: 12-tungstocobaltic acid-supported on nano silica as an electron transfer and Brønsted acid nano catalyst

Author:

Razlansari Mahtab1,Kahrizi Masoud2

Affiliation:

1. Faculty of Chemistry , Razi University , Kermanshah , 67149 , I. R. Iran

2. Tehran Chemie Pharmaceutical Co. , Tehran , 1378756411 , I. R. Iran

Abstract

Abstract In the present study, 12-tungestocobaltic acid, H5CoW12O40, was immobilized on nano silica from rice husk (CoW@NSiO2) to develop a novel, efficient, heterogeneous and recyclable nano catalyst for the synthesis of β-enaminones. It is apparent from acidity and cyclic voltammetric measurements that, the catalyst is electroactive and undergoes reversible redox transitions, as well as it is contains strong acid sites and mobile protons. As evidenced from mechanistic investigations, CoW@NSiO2 can catalyze the synthesis of β-enaminones with two simultaneous ways: electron transfer and Brønsted acid mechanisms. In order to confirm the synthesis of enaminones through simultaneous mechanisms of electron transfer and acidity, the model reaction was carried out in the presence of K5Co as an electroactive catalyst and CoW@NSiO2 with electron scavenger as an acid catalyst. The results showed that the reaction proceeded simultaneously through both mechanisms. There is evidence that the electron transfer property of this catalyst is most pronounced in this type of organic reactions. The catalyst demonstrated outstanding performance, and the methodology proved to be versatile, yielding excellent results across a wide range of substrates. It is worth mentioning that aliphatic amines were well-tolerated in the process and produced β-enaminone compounds with excellent yields and short reaction times. Also, reactions with dimedone, a cyclic 1,3-diketone, delivered moderate product yields. Additionally, the catalyst showed remarkable recyclability, maintaining its activity for a minimum of five consecutive cycles without any noticeable decline. Notably, the cyclic voltammetric and acidity measurements revealed that the catalyst’s electron transfer property and Brønsted acidity remained unchanged after five runs.

Publisher

Walter de Gruyter GmbH

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3