Evaluating timber quality in larger-diameter standing trees: rethinking the use of acoustic velocity

Author:

Krajnc Luka1ORCID,Farrelly Niall2,Harte Annette M.1ORCID

Affiliation:

1. College of Engineering and Informatics and Ryan Institute, National University of Ireland Galway , Galway , Ireland

2. Forestry Development Department , Teagasc, Athenry , Ireland

Abstract

Abstract The use of acoustic velocity for different purposes is becoming widespread in the forestry industry. However, there are conflicting reports on how well this technology reflects the mechanical properties of trees. In this study, the prediction of timber quality using acoustic technology was evaluated on mature standing trees of three softwood species. The velocity in 490 standing trees was measured in several directions (longitudinal, radial and tangential). A sub-sample of trees was felled and the acoustic velocity was measured in 120 logs which were then sawn into structural-sized timber. A total of 1383 boards were tested for bending, as were small clear specimens extracted from the structural-sized boards. The mean tree values of the timber grade-determining properties (elastic modulus, bending strength and density) of both specimen sizes were related to the acoustic velocities and tree slenderness. The correlations between the mean tree mechanical properties and acoustic velocities were relatively low, most likely due to a high ratio of diameter to measurement distance. The transverse directions showed similar correlations with mechanical properties in larger-diameter trees to the longitudinal direction, as did tree slenderness. The results suggest that while the acoustic velocity in the longitudinal direction can reflect the mean tree mechanical properties in small-diameter trees, alternatives are needed to achieve the same in larger-diameter trees.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Reference37 articles.

1. Amateis, R.L., Burkhart, H.E. (2015) Use of the Fakopp Treesonic acoustic device to estimate wood quality characteristics in loblolly pine trees planted at different densities. In: Proceedings of the 17th Biennial Southern Silvicultural Research Conference. U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC, USA. p. 5.

2. Arriaga, F., Llana, D.F., Esteban, M., Íñiguez-González, G. (2017) Influence of length and sensor positioning on acoustic time-of-flight (ToF) measurement in structural timber. Holzforschung 71:713–723.

3. Auty, D., Achim, A. (2008) The relationship between standing tree acoustic assessment and timber quality in Scots pine and the practical implications for assessing timber quality from naturally regenerated stands. Forestry 81:475–487.

4. British Standards Institution. Methods of Testing Small Clear Specimens of Timber. British Standards Institution, London, 1957.

5. Bucur, V. Acoustics in Wood, 2 ed. Springer-Verlag, Berlin, Heidelberg, 2006.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3