Mass transport and yield during spinning of lignin-cellulose carbon fiber precursors

Author:

Bengtsson Jenny12,Jedvert Kerstin1,Hedlund Artur1,Köhnke Tobias1,Theliander Hans2

Affiliation:

1. Biobased Fibres, RISE Research Institutes of Sweden , Argongatan 30 , 431 53 Mölndal , Sweden

2. Division of Forest Products and Chemical Engineering, Department of Chemistry and Chemical Engineering , Chalmers University of Technology , Kemigården 4 , Göteborg 412 96 , Sweden

Abstract

Abstract Lignin, a substance considered as a residue in biomass and ethanol production, has been identified as a renewable resource suitable for making inexpensive carbon fibers (CFs), which would widen the range of possible applications for light-weight CFs reinforced composites. Wet spinning of lignin-cellulose ionic liquid solutions is a promising method for producing lignin-based CFs precursors. However, wet-spinning solutions containing lignin pose technical challenges that have to be solved to enable industrialization. One of these issues is that a part of the lignin leaches into the coagulation liquid, which reduces yield and might complicate solvent recovery. In this work, the mass transport during coagulation is studied in depth using a model system and trends are confirmed with spinning trials. It was discovered that during coagulation, efflux of ionic liquid is not hindered by lignin concentration in solution and the formed cellulose network will enclose soluble lignin. Consequently, a high total concentration of lignin and cellulose in solution is advantageous to maximize yield. This work provides a fundamental understanding on mass transport during coagulation of lignin-cellulose solutions, crucial information when designing new solution-based fiber forming processes.

Funder

Energimyndigheten

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3