Quotients of hypersurfaces in weighted projective space

Author:

Bini Gilberto1

Affiliation:

1. Dipartimento di Matematica, Università degli Studi di Milano, Via C. Saldini 50, 20133 Milano, Italy

Abstract

Abstract In [Bini, van Geemen, Kelly, Mirror quintics, discrete symmetries and Shioda maps, 2009] some quotients of one-parameter families of Calabi–Yau varieties are related to the family of Mirror Quintics by using a construction due to Shioda. In this paper, we generalize this construction to a wider class of varieties. More specifically, let A be an invertible matrix with non-negative integer entries. We introduce varieties XA and in weighted projective space and in , respectively. The variety turns out to be a quotient of a Fermat variety by a finite group. As a by-product, XA is a quotient of a Fermat variety and is a quotient of XA by a finite group. We apply this construction to some families of Calabi–Yau manifolds in order to show their birationality.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weighted greatest common divisors and weighted heights;Journal of Number Theory;2020-08

2. Hypergeometric decomposition of symmetric K3 quartic pencils;Research in the Mathematical Sciences;2020-03-16

3. FROM HYPERELLIPTIC TO SUPERELLIPTIC CURVES;Albanian Journal of Mathematics;2019-06-15

4. Zeta Functions of Monomial Deformations of Delsarte Hypersurfaces;Symmetry, Integrability and Geometry: Methods and Applications;2017-11-07

5. Picard Ranks of K3 Surfaces of BHK Type;Calabi-Yau Varieties: Arithmetic, Geometry and Physics;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3