Geometric conditions on three-dimensional CR submanifolds in S 6

Author:

Djorić Mirjana1,Vrancken Luc2

Affiliation:

1. Faculty of Mathematics, University of Belgrade, Studentski trg 16, pb. 550, 11000 Belgrade, Serbia. Email:

2. LAMAV, ISTV2, Université de Valenciennes, Le Mont Houy, 59313 Valenciennes cedex 9, France. Email:

Abstract

Abstract A six-dimensional unit sphere has an almost complex structure J defined by the vector cross product on the space of purely imaginary Cayley numbers, which makes S 6 a nearly Kähler manifold. In this paper, we study 3-dimensional CR submanifolds of S 6(1), investigating certain geometric conditions. We show that if such a submanifold attains equality in Chen's inequality, it is always minimal. We recall that a classification of minimal 3-dimensional submanifolds was obtained in [Djorić, Vrancken, J. Geom. Phys. 56: 2279–2288, 2006]. For 3-dimensional CR submanifolds, the restriction of the almost complex structure J to the tangent space automatically induces an almost contact structure on the submanifold. We prove that this structure is not Sasakian with respect to the induced metric. We also give an example from [Hashimoto, Mashimo, J. Math. 28: 579–591, 2005], see also [Ejiri, Trans. Amer. Math. Soc. 297: 105–124, 1986], of a tube around a superminimal almost complex curve in S 6(1) for which this almost contact structure is Sasakian with respect to a constant scalar multiple of the induced metric.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent Developments on the First Chen Inequality in Differential Geometry;Mathematics;2023-10-06

2. Four-dimensional contact CR-submanifolds in S7(1);Mathematische Nachrichten;2017-04-05

3. Ideal CR Submanifolds;Geometry of Cauchy-Riemann Submanifolds;2016

4. CR-Submanifolds of the Nearly Kähler 6-Sphere;Geometry of Cauchy-Riemann Submanifolds;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3