The horofunction boundary of the Hilbert geometry

Author:

Walsh Cormac1

Affiliation:

1. INRIA Saclay & CMAP, Ecole Polytechnique, 91128 Palaiseau, France. Email:

Abstract

Abstract We investigate the horofunction boundary of the Hilbert geometry defined on an arbitrary finite-dimensional bounded convex domain D. We determine its set of Busemann points, which are those points that are the limits of “almost-geodesics”. In addition, we show that any sequence of points converging to a point in the horofunction boundary also converges in the usual sense to a point in the Euclidean boundary of D. We prove that all horofunctions are Busemann points if and only if the set of extreme sets of the polar of D is closed in the Painlevé–Kuratowski topology.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Horofunction compactifications of symmetric cones under Finsler distances;Annales Fennici Mathematici;2023-11-20

2. The Polish topology of the isometry group of the infinite dimensional hyperbolic space;Groups, Geometry, and Dynamics;2023-04-27

3. Horofunction Compactifications and Duality;The Journal of Geometric Analysis;2023-02-28

4. Ergodicity and equidistribution in Hilbert geometry;Journal of Modern Dynamics;2023

5. The horofunction boundary of a Gromov hyperbolic space;Mathematische Annalen;2022-12-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3