On the extendability of the Kneser–Poulsen conjecture to Riemannian manifolds

Author:

Csikós Balázs1,Kunszenti-Kovács Dávid1

Affiliation:

1. Institute of Mathematics, Eötvös University, Budapest, Pázmány, stny. 1/C, H-1117 Hungary. Email:

Abstract

Abstract The Kneser–Poulsen conjecture claims that if some balls of the Euclidean space are rearranged in such a way that the distances between the centers do not increase, then the volume of the union of the balls does not increase. Though the conjecture is still open in dimensions ≥ 3, important special cases of it have been verified not only in the Euclidean space but also in the hyperbolic and spherical spaces, raising the question about the widest class of Riemannian manifolds in which the conjecture can hold. Our main result is that if the conjecture is true for 3 balls in a complete Riemannian manifold, then the manifold must be of constant curvature, and if, furthermore, the manifold is connected, then it must be simply connected.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology

Reference5 articles.

1. Amer MR Bern Sahai Pushing disks together the continuous - motion case Discrete Comput MR Pushing disks apart the Kneser - Poulsen conjecture in the plane;Bezdek;Math Soc Geom,1985

2. MR Csiko s Moussong On the Kneser - Poulsen conjecture in elliptic space Manuscripta MR On the volume of unions and intersections of balls in Euclidean space;Gordon;Math,2007

3. Reine MR The Kneser - Poulsen conjecture for spherical polytopes Discrete MR Csiko s On the perimeter of the intersection of congruent disks;Bezdek;Angew Math Comput Geom,2002

4. MR Hadwiger Ungelo ste Probleme Nr Elem Kneser Einige Bemerkungen u ber das Minkowskische Fla chenmass Arch Basel MR Vanhecke Ball - homogeneous and disk - homogeneous Riemannian manifolds;Kowalski;Math Math,1956

5. Math MR Schmuckenschla ger The volume of the intersection of a convex body with its translates Eprint math Problem;Meyer;Z Math Scand,1982

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3