Elation generalized quadrangles of order (q, q 2), q even, with a classical subquadrangle of order q

Author:

Thas Koen1

Affiliation:

1. Ghent University, Department of Pure Mathematics and Computer Algebra, Galglaan 2, 9000 Ghent, Belgium.

Abstract

Abstract One of the famous open problems in Finite Geometry is the classification of ovoids in a projective 3-space PG(3, q) over the finite field with q elements, q even. For q odd, this classification was obtained in 1955 by A. Barlotti [ A. Barlotti, Un'estensione del teorema di Segre-Kustaanheimo. Boll. Un. Mat. Ital. (3) 10 (1955), 498–506. MR0075606 (17,776b) Zbl 0066.38901 ] and G. Panella [ G. Panella, Caratterizzazione delle quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito. Boll. Un. Mat. Ital. (3) 10 (1955), 507–513. MR0075607 (17,776c) Zbl 0066.38902 ]. A breakthrough result was a recent one of M. R. Brown, who showed in [ M. R. Brown, Ovoids of PG (3, q), q even, with a conic section. J. London Math. Soc. (2) 62 (2000), 569–582. MR1783645 (2001i:51012) Zbl 1038.51008 ] that when such an ovoid has a conic plane section, the ovoid must be an elliptic quadric. Even more recently, M. R. Brown and M. Lavrauw [ M. R. Brown, M. Lavrauw, Eggs in PG(4n − 1, q), q even, containing a pseudo-conic. Bull. London Math. Soc. 36 (2004), 633–639. MR2070439 (2005k:51009) Zbl 1064.51005 ] generalized this theorem by obtaining a similar result for higher dimensions. Both results have equivalent statements in the theory of (translation) generalized quadrangles. In this note, we improve these results by showing that an elation generalized quadrangle of order (q, q 2), q even, with a subGQ containing the elation point arises from a non-singular elliptic quadric in PG(5, q). The theorem itself arises as a corollary of a more general observation which works for all characteristics. There is a wealth of consequences.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. General Galois Geometries;Springer Monographs in Mathematics;2016

2. A Course on Elation Quadrangles;EMS SER LECT MATH;2012-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3