Promising novel biomarkers and candidate small-molecule drugs for lung adenocarcinoma: Evidence from bioinformatics analysis of high-throughput data

Author:

Li Chengrui1,Wan Yufeng2,Deng Weijun3,Fei Fan4,Wang Linlin5,Qi Fuwei4,Zheng Zhong4

Affiliation:

1. Department of Anesthesiology, Lianshui People’s Hospital Affiliated to Kangda College of Nanjing Medical University , Huai’an , People’s Republic of China

2. Department of Respiratory Medicine, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an , Huai’an , Jiangsu 223002 , People’s Republic of China

3. Department of Thoracic Surgery, Lianshui People’s Hospital Affiliated to Kangda College of Nanjing Medical University , Huai’an , People’s Republic of China

4. Department of Anesthesiology, The First People’s Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University , Suzhou , People’s Republic of China

5. Department of Respiratory Medicine, The First People’s Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University , Suzhou , People’s Republic of China

Abstract

Abstract Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer associated with an unstable prognosis. Thus, there is an urgent demand for the identification of novel diagnostic and prognostic biomarkers as well as targeted drugs for LUAD. The present study aimed to identify potential new biomarkers associated with the pathogenesis and prognosis of LUAD. Three microarray datasets (GSE10072, GSE31210, and GSE40791) from the Gene Expression Omnibus database were integrated to identify the differentially expressed genes (DEGs) in normal and LUAD samples using the limma package. Bioinformatics tools were used to perform functional and signaling pathway enrichment analyses for the DEGs. The expression and prognostic values of the hub genes were further evaluated by Gene Expression Profiling Interactive Analysis and real-time quantitative polymerase chain reaction. Furthermore, we mined the “Connectivity Map” (CMap) to explore candidate small molecules that can reverse the tumoral of LUAD based on the DEGs. A total of 505 DEGs were identified, which included 337 downregulated and 168 upregulated genes. The PPI network was established with 1,860 interactions and 373 nodes. The most significant pathway and functional enrichment associated with the genes were cell adhesion and extracellular matrix-receptor interaction, respectively. Seven DEGs with high connectivity degrees (ZWINT, RRM2, NDC80, KIF4A, CEP55, CENPU, and CENPF) that were significantly associated with worse survival were chosen as hub genes. Lastly, top 20 most important small molecules which reverses the LUAD gene expressions were identified. The findings contribute to revealing the molecular mechanisms of the initiation and progression of LUAD and provide new insights for integrating multiple biomarkers in clinical practice.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3