The co-treatment of rosuvastatin with dapagliflozin synergistically inhibited apoptosis via activating the PI3K/AKt/mTOR signaling pathway in myocardial ischemia/reperfusion injury rats

Author:

Gong Lei12,Wang Xuyang1,Pan Jinyu1,Zhang Mingjun1,Liu Dian1,Liu Ming1,Li Li2,An Fengshuang1

Affiliation:

1. The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University , No. 107 WenHuaXi Road , Jinan , Shandong 250012 , China

2. The Second Affiliated Hospital of Xuzhou Medical University , No.32 MeiJian Road, Quanshan District , Xuzhou , Jiangsu 221000 , China

Abstract

Abstract Objective The purpose of the present study was to evaluate the role of co-treatment of rosuvastatin (RSV) and dapagliflozin (DGZ) preconditioning in myocardium ischemia/reperfusion (I/R) injury and to further investigate the underlying mechanism. Methods Sprague-Dawley (SD) rats (n = 25) were divided into five groups randomly: (1) Sham, (2) I/R, (3) I/R + RSV (10 mg/kg), (4) IR + DGZ (1 mg/kg), and (5) I/R + RSV (10 mg/kg) + DGZ (1 mg/kg). The I/R model was induced with 30 min of left anterior descending occlusion followed by 120 min of reperfusion. Results In vivo pretreatment with RSV and DGZ, respectively, showed a significant reduction of infarction size, a significant increase in the levels of left ventricular systolic pressure, and maximal rate increase in left ventricular pressure (+dp/dt max), decrease in the levels of left ventricular end-diastolic pressure (LVEDP), maximal rate of decrease of left ventricular pressure (−dp/dt max) and activity of cardiac enzymes of creatine kinase (CK), creatine kinase MB isoenzymes (CK-MB), and hyper-tensive cardiac troponin I compared with the I/R group. H9C2 cells were exposed to hypoxia/reoxygenation to simulate an I/R model. In vitro administration of 25 µM RSV and 50 µM DGZ significantly enhanced cell viability, upregulated the expression levels of p-PI3K, p-Akt, p-mTOR, and Bcl-2, whereas it downregulated cleaved-caspase3, Bax. TUNEL assay indicated that pretreatment with RSV and DGZ decreased the apoptosis of H9C2 cells. Conclusion The combination of RSV and DGZ significantly enhances the cardioprotective effects compared with RSV or DGZ alone. RSV and DGZ have the potential cardioprotective effects against I/R injury by activating the PI3K/AKt/mTOR signaling pathway.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3