Dexmedetomidine may decrease the bupivacaine toxicity to heart

Author:

Jin Zhousheng1,Xia Fangfang2,Lin Tingting2,Cai Yaoyao2,Chen Hongfei2,Wang Yuelan1

Affiliation:

1. Department of Anesthesiology and Perioperative Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University , Jinan , Shandong Province, 250014 , China

2. Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University , Wenzhou , Zhejiang Province, 325000 , China

Abstract

Abstract Objective The purpose of our study was to explore the effect of dexmedetomidine on cardiac tolerance to bupivacaine. Method Human coronary endothelial cells were used to establish in vitro model. They were randomly divided into control (Con) group, dexmedetomidine (Dex) group, bupivacaine (Bupi) group, dexmedetomidine + bupivacaine group (DB group), and dexmedetomidine + bupivacaine + PI3K inhibitor (DB-inhibitor) group. Cell activity was measured by Cell counting kit-8 (CCK-8). Transwell was used to detect cell permeability. Western blotting was used to detect the protein expression of related factors. Results There were no notable differences in cell activity among the five groups (P > 0.05). Dexmedetomidine significantly reduced the permeability of endothelial cells to bupivacaine and increased the protein expression of Zonulaoeeludens-1 (ZO-1) (P < 0.01). However, the aforementioned effects of dexmedetomidine were disappeared after the addition of PI3K inhibitors. Furthermore, Dex and DB markedly increased the protein expression of PI3K, p-Akt, and p-PTEN in comparison with Con group (P < 0.001), but there was no significant difference in p-PTEN among DB-inhibitor, Con, and Bupi groups (P > 0.05). Conclusion Dex reduced Bupi-induced vasopermeability through protein expression of ZO-1 and PI3K/Akt pathway, which may lead to the decrease of Bupi-induced cardiotoxicity.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3