An ultra-dense spacing-based PON by incorporating dual drive Mach–Zehnder modulator for comb generation

Author:

Singh Navjot1,Naresh Bansal Bharat1

Affiliation:

1. ECE Department , MIMIT , Malout , Punjab , India

Abstract

Abstract Wavelength division multiplexed passive optical is promising technique to achieve a high data rate and large number of user. The notable advantages of WDM PON is the combination of reliability, cheap in cost, accessible bandwidth, high security, large optical reach and it can support large number of ONU. There are multiple approaches to achieve high-speed WDN PON using different transmission techniques. In WDM, multiple lasers are required which increase the cost of the system. To reduce cost, an optical multicarrier generation system is proposed. An economical multiple carrier generation with the incorporation of sine generator and Mach–Zehndar modulator is demonstrated. Utmost work of sine generator and dual drive modulator was to attain low cost functioning of passive optical networks. Multicarrier generation was done and replacement of laser carriers with optical multicarrier generator. Carriers were generated with the frequency spacing of 20 GHz and these carriers were used in the passive optical networks with the tone-to-noise ratio of 40 dB, amplitude difference of 1.4 dB. For the transmission of downstream in the PON, differential phase shift keying was employed at 10 Gbps data speed. Transmission distance achieved was 30 km using single-mode fiber and this was a part of optical distribution network. Optical network unit was next part after ODN and signals were received with balanced receiver. Moreover, half signal was given to intensity modulator for the signal re-modulation. Bit error rate of 10–9 was achieved at all channels in the downstream. An upstream of 10 Gbps was accomplished in the passive optical network.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3