Computing abelian subalgebras for linear algebras of upper-triangular matrices from an algorithmic perspective

Author:

Ceballos Manuel1,Núñez Juan1,Tenorio Ángel F.2

Affiliation:

1. Departamento de Geometría y Topología, Facultad de Matemáticas, Universidad de Sevilla, Aptdo. 1160, 41080 Sevilla , Spain

2. Departamento de Economía, Métodos Cuantitativos e Historia Económica, Escuela Politécnica Superior, Universidad Pablo de Olavide, Ctra. Utrera Km. 1, 41013 Sevilla , Spain

Abstract

Abstract In this paper, the maximal abelian dimension is algorithmically and computationally studied for the Lie algebra hn, of n×n upper-triangular matrices. More concretely, we define an algorithm to compute abelian subalgebras of hn besides programming its implementation with the symbolic computation package MAPLE. The algorithm returns a maximal abelian subalgebra of hn and, hence, its maximal abelian dimension. The order n of the matrices hn is the unique input needed to obtain these subalgebras. Finally, a computational study of the algorithm is presented and we explain and comment some suggestions and comments related to how it works.

Publisher

Walter de Gruyter GmbH

Reference14 articles.

1. [1] L. Andrianopoli, R. D'Auria, S. Ferrara, P. Frè, M. Trigiante, R-R scalars, U-duality and solvable Lie algebras. Nucl. Phys. B 496 617-629 (1997).

2. [2] J.C. Benjumea, F.J. Echarte, J. Núñez and A.F. Tenorio, An Obstruction to Represent Abelian Lie Algebras by Unipotent Matrices. Extracta Math. 19 269- 277 (2004).

3. [3] J.C. Benjumea, J. Núñez and A.F. Tenorio, The Maximal Abelian Dimension of Linear Algebras formed by Strictly Upper Triangular Matrices, Theor. Math. Phys. 152 1225-1233 (2007).

4. [4] D. Burde and M. Ceballos, Abelian ideals of maximal dimension for solvable Lie algebras. J. Lie Theory 22 741-756 (2012).

5. [5] R. Campoamor-Stursberg, Number of missing label operators and upper bounds for dimensions of maximal Lie subalgebras. Acta Phys. Polon. B 37 2745-2760 (2006).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3