On Generalized Jacobsthal and Jacobsthal-Lucas polynomials

Author:

Catarino Paula1,Morgado Maria Luisa1

Affiliation:

1. Mathematics Centre CMAT, Pole CMAT-UTAD, Department of Mathematics, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados 5000-801, Vila Real , Portugal

Abstract

Abstract In this paper we introduce a generalized Jacobsthal and Jacobsthal-Lucas polynomials, Jh,n and jh,n, respectively, that consist on an extension of Jacobsthal's polynomials Jn(𝑥) and Jacobsthal-Lucas polynomials jn(𝑥). We provide their properties and a generalization of the usual identities. We also present, for each one of these generalized polynomials, their ordinary generating functions and matrices. In the last part of the paper, we present some special kind of tridiagonal matrices whose entries are elements of these generalized polynomials.

Publisher

Walter de Gruyter GmbH

Reference19 articles.

1. [1] C. Bolat and H. Köse, On the Properties of k-Fibonacci Numbers, Int. J. Contemp. Math. Sci. 22 (5) (2010), 1097-1105.

2. [2] H. Campos, P. Catarino, A. P. Aires, P. Vasco and A. Borges, On some identities of k-Jacobsthal-Lucas Numbers, International Journal of Mathematical Analysis 8 (10) (2014), 489-494.

3. [3] P. Catarino, On some identities for k-Fibonacci sequence, Int. J. Contemp. Math. Sci. 9 (1) (2014), 37-42.10.12988/ijcms.2014.311120

4. [4] P. Catarino, P. Vasco, A. Borges, H. Campos, A. P. Aires, Sums, Products and identities involving k-Fibonacci and k-Lucas sequences, JP J. Algebra Number Theory Appl. 32 (1) (2014), 63-77.10.17654/JPANTAFeb2014_063_077

5. [5] P. J. Davis, Circulant Matrices, John Wiley & Sons, New York, 1979.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Catalan transform of the incomplete Jacobsthal numbers and incomplete generalized Jacobsthal polynomials;Asian-European Journal of Mathematics;2021-09-03

2. Matrix Structure of Jacobsthal Numbers;Journal of Function Spaces;2021-08-12

3. On ̄h-Jacobsthal and ̄h-Jacobsthal–Lucas sequences, and related quaternions;Analele Universitatii "Ovidius" Constanta - Seria Matematica;2019-12-01

4. Special Numbers, Special Quaternions and Special Symbol Elements;Models and Theories in Social Systems;2018-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3