On neighborhoods of functions associated with conic domains

Author:

Yağmur Nihat1

Affiliation:

1. Department of Mathematics, Faculty of Science and Art, Erzincan University, 24000, Erzincan, Turkey .

Abstract

Abstract Let kST [A, B], k ≥ 0, −1 ≤ B < A ≤ 1 be the class of normalized analytic functions defined in the open unit disk satisfying ( ( B 1 ) z f ( z ) f ( z ) ( A 1 ) ( B + 1 ) z f ( z ) f ( z ) ( A + 1 ) ) > k | ( B 1 ) z f ( z ) f ( z ) ( A 1 ) ( B + 1 ) z f ( z ) f ( z ) ( A + 1 ) 1 | . $$\Re \left( {{{(B - 1){{zf'(z)} \over {f(z)}} - (A - 1)} \over {(B + 1){{zf'(z)} \over {f(z)}} - (A + 1)}}} \right) > k\left| {{{(B - 1){{zf'(z)} \over {f(z)}} - (A - 1)} \over {(B + 1){{zf'(z)} \over {f(z)}} - (A + 1)}} - 1} \right|.$$ and let kUCV [A, B], k ≥ 0, −1 ≤ B < A ≤ 1 be the corresponding class satisfying ( ( B 1 ) ( z f ( z ) ) f ( z ) ( A 1 ) ( B + 1 ) ( z f ( z ) ) f ( z ) ( A + 1 ) ) > k | ( B 1 ) ( z f ( z ) ) f ( z ) ( A 1 ) ( B + 1 ) ( z f ( z ) ) f ( z ) ( A + 1 ) 1 | . $$\Re \left( {{{(B - 1){{\left( {zf'(z)} \right)^{\prime } } \over {f'(z)}} - (A - 1)} \over {(B + 1){{\left( {zf'(z)} \right)^{\prime } } \over {f'(z)}} - (A + 1)}}} \right) > k\left| {{{(B - 1){{\left( {zf'(z)} \right)^{\prime } } \over {f'(z)}} - (A - 1)} \over {(B + 1){{\left( {zf'(z)} \right)^{\prime } } \over {f'(z)}} - (A + 1)}} - 1} \right|.$$ For an appropriate δ > 0, the δ neighborhood of a function fkUCV [A, B] is shown to consist of functions in the class kST [A, B].

Publisher

Walter de Gruyter GmbH

Reference18 articles.

1. [1] R.M. Ali, K.G. Subramanian, V. Ravichandran and O.P. Ahuja, Neighborhoods of starlike and convex functions associated with parabola, J. Ineq. and Appl., 10.1155 (2008) 346279.

2. [2] O. Altıntaş and S. Owa, Neighborhoods of certain analytic functions with negative coefficients, Int. J. Math. Sci., 19 (1996) 797-800.

3. [3] O. Altıntaş, H. Irmak, H. M. Srivastava, Neighborhoods for certain subclasses of multivalently analytic functions defined by using a differential operator, Comput. Math. Appl. 55 (2008), no. 3, 331–338.

4. [4] A.W. Goodman, Univalent Functions, vols. I-II, Mariner Publishing Company, Tempa, Florida, USA, 1983.

5. [5] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math. 28 (1973) 297-326.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3