On the first Zagreb index and multiplicative Zagreb coindices of graphs

Author:

Das Kinkar Ch.1,Akgunes Nihat2,Togan Muge3,Yurttas Aysun3,Cangul I. Naci3,Cevik A. Sinan4

Affiliation:

1. Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea

2. Department of Mathematics-Computer Sciences, Necmettin Erbakan University, Faculty of Science, Meram Yeniyol, 42100, Konya , Turkey

3. Department of Mathematics, Uludag University, Faculty of Science and Art, Gorukle Campus, 16059, Bursa , Turkey

4. Department of Mathematics, Selcuk University, Faculty of Science, Campus, 42075, Konya , Turkey

Abstract

Abstract For a (molecular) graph G with vertex set V (G) and edge set E(G), the first Zagreb index of G is defined as , where dG(vi) is the degree of vertex vi in G. Recently Xu et al. introduced two graphical invariants and named as first multiplicative Zagreb coindex and second multiplicative Zagreb coindex, respectively. The Narumi-Katayama index of a graph G, denoted by NK(G), is equal to the product of the degrees of the vertices of G, that is, NK(G) = . The irregularity index t(G) of G is defined as the number of distinct terms in the degree sequence of G. In this paper, we give some lower and upper bounds on the first Zagreb index M1(G) of graphs and trees in terms of number of vertices, irregularity index, maxi- mum degree, and characterize the extremal graphs. Moreover, we obtain some lower and upper bounds on the (first and second) multiplicative Zagreb coindices of graphs and characterize the extremal graphs. Finally, we present some relations between first Zagreb index and Narumi-Katayama index, and (first and second) multiplicative Zagreb index and coindices of graphs.

Publisher

Walter de Gruyter GmbH

Reference21 articles.

1. [1] N. Akgünş, A. S. Çevik, A new bound of radius with irregularity index, Applied Mathematics and Computation 219 (11) (2013) 5750{5753.

2. [2] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Macmillan London and Elsevier, New York, 1976.

3. [3] K. C. Das, Maximizing the sum of the squares of the degrees of a graph, Discrete Math. 285 (2004) 57{66.

4. [4] K. C. Das, On geometrical-arithmetic index of graphs, MATCH Commun. Math. Comput. Chem. 64 (3) (2010) 619{630.

5. [5] K. C. Das, On comparing Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 63 (2) (2010) 433{440.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3