Chemical computational approaches for optimization of effective surfactants in enhanced oil recovery

Author:

Banerjee Tandrima1,Samanta Abhijit2

Affiliation:

1. Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) Kolkata , West Bengal 741246 , India

2. School of Engineering and Applied Sciences , The Neotia University , Sarisha , West Bengal 743368 , India

Abstract

Abstract The surfactant flooding becomes an attractive method among several Enhanced Oil Recovery (EOR) processes to improve the recovery of residual oil left behind in the reservoir after secondary oil recovery process. The designing of a new effective surfactant is a comparatively complex and often time consuming process as well as cost-effective due to its dependency on the crude oil and reservoir properties. An alternative chemical computational approach is focused in this article to optimize the performance of effective surfactant system for EOR. The molecular dynamics (MD), dissipative particle dynamics (DPD) and density functional theory (DFT) simulations are mostly used chemical computational approaches to study the behaviour in multiple phase systems like surfactant/oil/brine. This article highlighted a review on the impact of surfactant head group structure on oil/water interfacial property like interfacial tensions, interface formation energy, interfacial thickness by MD simulation. The effect of entropy in micelle formation has also discussed through MD simulation. The polarity, dipole moment, charge distribution and molecular structure optimization have been illustrated by DFT. A relatively new coarse-grained method, DPD is also emphasized the phase behaviour of surfactant/oil/brine as well as polymer-surfactant complex system.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Materials Science,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3