Affiliation:
1. Departamento de Matemáticas, Universidad Nacional de Colombia , Bogotá 360354 , Colombia
2. Facultad Tecnológica, Universidad Distrital Francisco José de Caldas , Bogotá , Colombia
Abstract
Abstract
In this paper, the functions
u
∈
B
V
φ
[
0
,
1
]
u\in B{V}_{\varphi }\left[0,1]
which define compact and Fredholm multiplication operators
M
u
{M}_{u}
acting on the space of functions of bounded
φ
\varphi
-variation are studied. All the functions
u
∈
B
V
φ
[
0
,
1
]
u\hspace{-0.08em}\in \hspace{-0.08em}B{V}_{\varphi }\left[0,\hspace{-0.08em}1]
which define multiplication operators
M
u
:
B
V
φ
[
0
,
1
]
→
B
V
φ
[
0
,
1
]
{M}_{u}:B{V}_{\varphi }\left[0,1]\to B{V}_{\varphi }\left[0,1]
with closed range are characterized.
Reference19 articles.
1. C. Jordan
, Sur la série de Fourier, Comptes Rendus de l’Académie des Sciences 2 (1881), 228–230.
2. A. I. Vol’pert
and
S. I. Hudjacv
, Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics, Mechanics: Analysis, vol. 8, Martinus Nijhoff Publishers, Dordrecht, Netherlands, 1985.
3. N. Wiener
, The quadratic variation of function and its Fourier coefficients, Massachusetts J. Math. 3 (1924), 72–94, https://doi.org/10.1002/sapm19243272.
4. L. C. Young
, Sur une généralisation de la notion de variation de puissance piéme bornée au sens de M. Wiener, et sur la convergence des séries de Fourier, C.R. Acad. Sci. Paris 204 (1937), 470–472.
5. V. V. Chistyakov
, Mappings of generalized variation and composition operators, J. Math. Sci. 11 (2002), 2455–2466, https://doi.org/10.1023/A:1015018310969.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献