Affiliation:
1. College of Mathematics and System Science, Xinjiang University , Urumqi 830046 , P. R. China
Abstract
Abstract
For a real number
α
\alpha
, the general Randić index of a graph
G
G
, denoted by
R
α
(
G
)
{R}_{\alpha }\left(G)
, is defined as the sum of
(
d
(
u
)
d
(
v
)
)
α
{\left(d\left(u)d\left(v))}^{\alpha }
for all edges
u
v
uv
of
G
G
, where
d
(
u
)
d\left(u)
denotes the degree of a vertex
u
u
in
G
G
. In particular,
R
−
1
2
(
G
)
{R}_{-\tfrac{1}{2}}\left(G)
is the ordinary Randić index, and is simply denoted by
R
(
G
)
R\left(G)
. Let
α
\alpha
be a real number. In this article, we show that
(1)
if
α
≥
0
\alpha \ge 0
,
R
α
(
L
(
G
)
)
≥
2
R
α
(
G
)
{R}_{\alpha }\left(L\left(G))\ge 2{R}_{\alpha }\left(G)
for any graph
G
G
with
δ
(
G
)
≥
3
\delta \left(G)\ge 3
;
(2)
if
α
≥
0
\alpha \ge 0
,
R
α
(
L
(
G
)
)
≥
R
α
(
G
)
{R}_{\alpha }\left(L\left(G))\ge {R}_{\alpha }\left(G)
for any connected graph
G
G
which is not isomorphic to
P
n
{P}_{n}
;
(3)
if
α
<
0
\alpha \lt 0
,
R
α
(
L
(
G
)
)
≥
R
α
(
G
)
{R}_{\alpha }\left(L\left(G))\ge {R}_{\alpha }\left(G)
for any
k
k
-regular graph
G
G
with
k
≥
2
−
2
α
+
1
k\ge {2}^{-2\alpha }+1
;
(4)
R
(
L
(
S
(
G
)
)
)
≥
R
(
S
(
G
)
)
R\left(L\left(S\left(G)))\ge R\left(S\left(G))
for any graph
G
G
with
δ
(
G
)
≥
3
\delta \left(G)\ge 3
, where
S
(
G
)
S\left(G)
is the graph obtained from
G
G
by inserting exactly one vertex into each edge.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献