On split regular BiHom-Poisson color algebras

Author:

Tao Yaling1,Cao Yan1

Affiliation:

1. Department of Mathematics, Harbin University of Science and Technology , Harbin 150080 , China

Abstract

Abstract The purpose of this paper is to introduce the class of split regular BiHom-Poisson color algebras, which can be considered as the natural extension of split regular BiHom-Poisson algebras and of split regular Poisson color algebras. Using the property of connections of roots for this kind of algebras, we prove that such a split regular BiHom-Poisson color algebra L L is of the form L = [ α ] Λ / I [ α ] L={\oplus }_{\left[\alpha ]\in \Lambda \text{/} \sim }{I}_{\left[\alpha ]} with I [ α ] {I}_{\left[\alpha ]} a well described (graded) ideal of L L , satisfying [ I [ α ] , I [ β ] ] + I [ α ] I [ β ] = 0 \left[{I}_{\left[\alpha ]},{I}_{\left[\beta ]}]+{I}_{\left[\alpha ]}{I}_{\left[\beta ]}=0 if [ α ] [ β ] \left[\alpha ]\ne \left[\beta ] . In particular, a necessary and sufficient condition for the simplicity of this algebra is determined, and it is shown that L L is the direct sum of the family of its simple (graded) ideals.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference30 articles.

1. M. Gerstenhaber , On the deformation of rings and algebras: II, Ann. Math. 84 (1966), no. 1, 1–19, https://doi.org/10.2307/1970528 .

2. C. Zhu , H. Li , and Y. Li , Poisson derivations and the first Poisson cohomology group on trivial extension algebras, B. Iran. Math Soc. 45 (2019), no. 5, 1339–1352, https://doi.org/10.1007/s41980-018-00201-3 .

3. V. Ginzburg and D. Kaledin , Poisson deformations of symplectic quotient singularities, Adv. Math. 186 (2004), no. 1, 1–57, https://doi.org/10.1016/j.aim.2003.07.006 .

4. X. Wu , H. Zhu , and M. Chen , The tensor product of n-differential graded Poisson algebras, J. Zhejiang Univ. Sci. Ed. 42 (2015), no. 4, 391–395, https://doi.org/10.3785/j.issn.1008-9497.2015.04.003 .

5. C. Wang , Q. Gao , and Q. Zhang , Poisson color algebras, Chinese. Ann. Math. Ser. A. 36 (2015), no. 2, 209–216, https://doi.org/10.16205/j.cnki.cama.2015.0020 .

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transposed BiHom-Poisson algebras;Communications in Algebra;2022-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3