Degenerate binomial and Poisson random variables associated with degenerate Lah-Bell polynomials

Author:

Kim Taekyun1,Kim Dae San2,Dolgy Dmitry V.3,Park Jin-Woo4

Affiliation:

1. Department of Mathematics, Kwangwoon University , Seoul 139-701 , Republic of Korea

2. Department of Mathematics, Sogang University , Seoul 121-742 , Republic of Korea

3. Hanrimwon, Kwangwoon University , Seoul 139-701 , Republic of Korea

4. Department of Mathematics Education, Daegu University , Gyeongsan , 38453 , Republic of Korea

Abstract

Abstract The aim of this paper is to study the Poisson random variables in relation to the Lah-Bell polynomials and the degenerate binomial and degenerate Poisson random variables in connection with the degenerate Lah-Bell polynomials. Among other things, we show that the rising factorial moments of the degenerate Poisson random variable with parameter α \alpha are given by the degenerate Lah-Bell polynomials evaluated at α \alpha . We also show that the probability-generating function of the degenerate Poisson random variable is equal to the generating function of the degenerate Lah-Bell polynomials. Also, we show similar results for the Poisson random variables. Here the n n th Lah-Bell number counts the number of ways a set of n n elements can be partitioned into non-empty linearly ordered subsets, the Lah-Bell polynomials are natural extensions of the Lah-Bell numbers and the degenerate Lah-Bell polynomials are degenerate versions of the Lah-Bell polynomials.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference12 articles.

1. H. K. Kim, Degenerate Lah-Bell polynomials arising from degenerate Sheffer sequences, Adv. Differ. Equ. 2020 (2020), 687.

2. L. Comtet, Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht-Holland, 1974.

3. T. Kim and D. S. Kim, Degenerate polyexponential functions and degenerate Bell polynomials, J. Math. Anal. Appl. 487 (2020), no. 2, 124017.

4. S. Roman, The umbral calculus, Pure and Applied Mathematics, vol. 111, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984.

5. S. Tauber, Lah numbers for Fibonacci and Lucas polynomials, Fibonacci Quart. 6 (1968), no. 5, 93–99.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some identities on degenerate harmonic and degenerate higher-order harmonic numbers;Applied Mathematics and Computation;2025-02

2. Some Identities on  λ-Analogues of Lah Numbers and Lah-Bell Polynomials;European Journal of Pure and Applied Mathematics;2024-07-31

3. On the degenerate higher order Frobenius-Euler polynomials;Journal of Mathematics and Computer Science;2024-04-10

4. Probabilistic degenerate Stirling polynomials of the second kind and their applications;Mathematical and Computer Modelling of Dynamical Systems;2024-01-15

5. Probabilistic Degenerate Bell Polynomials Associated with Random Variables;Russian Journal of Mathematical Physics;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3