Characterizations of *-antiderivable mappings on operator algebras

Author:

An Guangyu1,Zhang Xueli1,He Jun2

Affiliation:

1. Department of Mathematics, Shaanxi University of Science and Technology , Xi’an 710021 , China

2. Department of Mathematics, Anhui Polytechnic University , Wuhu 241000 , China

Abstract

Abstract Let A {\mathcal{A}} be a \ast -algebra, {\mathcal{ {\mathcal M} }} be a \ast - A {\mathcal{A}} -bimodule, and δ \delta be a linear mapping from A {\mathcal{A}} into {\mathcal{ {\mathcal M} }} . δ \delta is called a \ast -derivation if δ ( A B ) = A δ ( B ) + δ ( A ) B \delta \left(AB)=A\delta \left(B)+\delta \left(A)B and δ ( A ) = δ ( A ) \delta \left({A}^{\ast })=\delta {\left(A)}^{\ast } for each A , B A,B in A {\mathcal{A}} . Let G G be an element in A {\mathcal{A}} , δ \delta is called a \ast -antiderivable mapping at G G if A B = G δ ( G ) = B δ ( A ) + δ ( B ) A A{B}^{\ast }=G\Rightarrow \delta \left(G)={B}^{\ast }\delta \left(A)+\delta {\left(B)}^{\ast }A for each A , B A,B in A {\mathcal{A}} . We prove that if A {\mathcal{A}} is a C {C}^{\ast } -algebra, {\mathcal{ {\mathcal M} }} is a Banach \ast - A {\mathcal{A}} -bimodule and G G in A {\mathcal{A}} is a separating point of {\mathcal{ {\mathcal M} }} with A G = G A AG=GA for every A A in A {\mathcal{A}} , then every \ast -antiderivable mapping at G G from A {\mathcal{A}} into {\mathcal{ {\mathcal M} }} is a \ast -derivation. We also prove that if A {\mathcal{A}} is a zero product determined Banach \ast -algebra with a bounded approximate identity, {\mathcal{ {\mathcal M} }} is an essential Banach \ast - A {\mathcal{A}} -bimodule and δ \delta is a continuous \ast -antiderivable mapping at the point zero from A {\mathcal{A}} into {\mathcal{ {\mathcal M} }} , then there exists a \ast -Jordan derivation Δ \Delta from A {\mathcal{A}} into {{\mathcal{ {\mathcal M} }}}^{\sharp \sharp } and an element ξ \xi in {{\mathcal{ {\mathcal M} }}}^{\sharp \sharp } such that δ ( A ) = Δ ( A ) + A ξ \delta \left(A)=\Delta \left(A)+A\xi for every A A in A {\mathcal{A}} . Finally, we show that if A {\mathcal{A}} is a von Neumann algebra and δ \delta is a \ast -antiderivable mapping (not necessary continuous) at the point zero from A {\mathcal{A}} into itself, then there exists a \ast -derivation Δ \Delta from A {\mathcal{A}} into itself such that δ ( A ) = Δ ( A ) + A δ ( I ) \delta \left(A)=\Delta \left(A)+A\delta \left(I) for every A A in A {\mathcal{A}} .

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3