Classical solutions to Cauchy problems for parabolic–elliptic systems of Keller-Segel type

Author:

Winkler Michael1

Affiliation:

1. Institut für Mathematik, Universität Paderborn , 33098 Paderborn , Germany

Abstract

Abstract The Cauchy problem in R n {{\mathbb{R}}}^{n} , n 2 n\ge 2 , for u t = Δ u ( u S v ) , 0 = Δ v + u , ( ) \begin{array}{r}\left\{\phantom{\rule[-1.25em]{}{0ex}}\begin{array}{l}{u}_{t}=\Delta u-\nabla \cdot \left(uS\cdot \nabla v),\\ 0=\Delta v+u,\end{array}\right.\hspace{2.0em}\hspace{2.0em}\hspace{2.0em}\left(\star )\end{array} is considered for general matrices S R n × n S\in {{\mathbb{R}}}^{n\times n} . A theory of local-in-time classical existence and extensibility is developed in a framework that differs from those considered in large parts of the literature by involving bounded classical solutions. Specifically, it is shown that for all non-negative initial data belonging to BUC ( R n ) L p ( R n ) {\rm{BUC}}\left({{\mathbb{R}}}^{n})\cap {L}^{p}\left({{\mathbb{R}}}^{n}) with some p [ 1 , n ) p\in \left[1,n) , there exist T max ( 0 , ] {T}_{\max }\in \left(0,\infty ] and a uniquely determined u C 0 ( [ 0 , T max ) ; BUC ( R n ) ) C 0 ( [ 0 , T max ) ; L p ( R n ) ) C ( R n × ( 0 , T max ) ) u\in {C}^{0}\left(\left[0,{T}_{\max });\hspace{0.33em}{\rm{BUC}}\left({{\mathbb{R}}}^{n}))\cap {C}^{0}\left(\left[0,{T}_{\max });\hspace{0.33em}{L}^{p}\left({{\mathbb{R}}}^{n}))\cap {C}^{\infty }\left({{\mathbb{R}}}^{n}\times \left(0,{T}_{\max })) such that with v Γ u v:= \Gamma \star u , and with Γ \Gamma denoting the Newtonian kernel on R n {{\mathbb{R}}}^{n} , the pair ( u , v ) \left(u,v) forms a classical solution of ( \star ) in R n × ( 0 , T max ) {{\mathbb{R}}}^{n}\times \left(0,{T}_{\max }) , which has the property that if T max < , then both limsup t T max u ( , t ) L ( R n ) = and limsup t T max v ( , t ) L ( R n ) = . \hspace{0.1em}\text{if}\hspace{0.1em}\hspace{0.33em}{T}_{\max }\lt \infty ,\hspace{1.0em}\hspace{0.1em}\text{then both}\hspace{0.1em}\hspace{0.33em}\mathop{\mathrm{limsup}}\limits_{t\nearrow {T}_{\max }}\Vert u\left(\cdot ,t){\Vert }_{{L}^{\infty }\left({{\mathbb{R}}}^{n})}=\infty \hspace{1.0em}\hspace{0.1em}\text{and}\hspace{0.1em}\hspace{1.0em}\mathop{\mathrm{limsup}}\limits_{t\nearrow {T}_{\max }}\Vert \nabla v\left(\cdot ,t){\Vert }_{{L}^{\infty }\left({{\mathbb{R}}}^{n})}=\infty . An exemplary application of this provides a result on global classical solvability in cases when S + 1 | S+{\bf{1}}| is sufficiently small, where 1 = diag ( 1 , , 1 ) {\bf{1}}={\rm{diag}}\hspace{0.33em}\left(1,\ldots ,1) .

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3