A study of minimax shrinkage estimators dominating the James-Stein estimator under the balanced loss function

Author:

Benkhaled Abdelkader1,Hamdaoui Abdenour2,Almutiry Waleed3,Alshahrani Mohammed4,Terbeche Mekki5

Affiliation:

1. Department of Biology, University of Mascara, Laboratory of Stochastic Models, Statistics and Applications, University Tahar Moulay of Saida , Mascara, 29000 , Algeria

2. Department of Mathematics, University of Science and Technology, Mohamed Boudiaf, Oran, Laboratory of Statistics and Random Modelisations of Tlemcen University (LSMA), El Mnaouar, BP 1505, Bir El Djir 31000 , Oran , Algeria

3. Department of Mathematics, College of Science and Arts in Ar Rass, Qassim University , Buryadah 52571 , Saudi Arabia

4. Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University , Al-Kharj 11942 , Saudi Arabia

5. Department of Mathematics, University of Science and Technology, Mohamed Boudiaf, Oran, Laboratory of Analysis and Application of Radiation (LAAR), USTO-MB, El Mnaouar, BP 1505 , Bir El Djir 31000 , Oran , Algeria

Abstract

Abstract One of the most common challenges in multivariate statistical analysis is estimating the mean parameters. A well-known approach of estimating the mean parameters is the maximum likelihood estimator (MLE). However, the MLE becomes inefficient in the case of having large-dimensional parameter space. A popular estimator that tackles this issue is the James-Stein estimator. Therefore, we aim to use the shrinkage method based on the balanced loss function to construct estimators for the mean parameters of the multivariate normal (MVN) distribution that dominates both the MLE and James-Stein estimators. Two classes of shrinkage estimators have been established that generalized the James-Stein estimator. We study their domination and minimaxity properties to the MLE and their performances to the James-Stein estimators. The efficiency of the proposed estimators is explored through simulation studies.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3