A comprehensive review of the recent numerical methods for solving FPDEs

Author:

Alsidrani Fahad12,Kılıçman Adem3,Senu Norazak24

Affiliation:

1. Department of Mathematics, College of Science, Qassim University , Buraydah , 51452 , Saudi Arabia

2. Institute for Mathematical Research, Universiti Putra Malaysia , Serdang 43400 , Selangor , Malaysia

3. School of Mathematical Sciences, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA , 40450 Shah Alam , Selangor , Malaysia

4. Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia , Serdang 43400 , Selangor , Malaysia

Abstract

Abstract Fractional partial differential equations (FPDEs) have gained significant attention in various scientific and engineering fields due to their ability to describe complex phenomena with memory and long-range interactions. Solving FPDEs analytically can be challenging, leading to a growing need for efficient numerical methods. This review article presents the recent analytical and numerical methods for solving FPDEs, where the fractional derivatives are assumed in Riemann-Liouville’s sense, Caputo’s sense, Atangana-Baleanu’s sense, and others. The primary objective of this study is to provide an overview of numerical techniques commonly used for FPDEs, focusing on appropriate choices of fractional derivatives and initial conditions. This article also briefly illustrates some FPDEs with exact solutions. It highlights various approaches utilized for solving these equations analytically and numerically, considering different fractional derivative concepts. The presented methods aim to expand the scope of analytical and numerical solutions available for time-FPDEs and improve the accuracy and efficiency of the techniques employed.

Publisher

Walter de Gruyter GmbH

Reference57 articles.

1. I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal. 5 (2001), no. 4, 367–386, DOI: https://doi.org/10.48550/arXiv.math/0110241.

2. R. E. Gutierrez, J. M. Rosário, and J. Tenreiro Machado, Fractional order calculus: basic concepts and engineering applications, Math. Probl. Eng. 2010 (2010), 375858, DOI: https://doi.org/10.1155/2010/375858.

3. M. H. Tavassoli, A. Tavassoli, and M. O. Rahimi, The geometric and physical interpretation of fractional order derivatives of polynomial functions, Differ. Geom. Dyn. Syst. 15 (2013), 93–104, http://www.mathem.pub.ro/dgds/v15/D15-ta.pdf.

4. B. Guo, X. Pu, and F. Huang, Fractional Partial Differential Equations and their Numerical Solutions, World Scientific, Singapore, 2015.

5. A. Ahmadi, A. M. Amani, and F. A. Boroujeni, Fractional-order IMC-PID controller design for fractional-order time delay processes, 2020 28th Iranian Conference on Electrical Engineering (ICEE), Math. Probl. Eng., 2020, pp. 1–6, DOI: https://doi.org/10.1109/ICEE50131.2020.9261041.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3