On Graham partitions twisted by the Legendre symbol

Author:

Kim Byungchan1,Kim Ji Young2,Lee Chong Gyu3,Lee Sang June4,Park Poo-Sung5,Park Yoon Kyung1

Affiliation:

1. School of Natural Sciences, Seoul National University of Science and Technology, 232 Gongneung-ro , Nowon-gu , Seoul, 01811 , Republic of Korea

2. Department of Mathematical Sciences, Seoul National University, 1 Gwanak-ro , Gwanak-Gu , Seoul , 08826 , Republic of Korea

3. Department of Mathematics, Soongsil University, 369 Sangdo-ro , Dongjak-gu , Seoul , 06978 , Republic of Korea

4. Department of Mathematics, College of Science, Kyung Hee University, 26 Kyungheedae-ro , Dongdaemun-gu , Seoul , 02447 , Republic of Korea

5. Department of Mathematics Education, Kyungnam University, Changwon-si , Gyeongsangnam-do, 51767 , Republic of Korea

Abstract

Abstract We investigate when there is a partition of a positive integer n n , n = f ( λ 1 ) + f ( λ 2 ) + + f ( λ ) , n=f\left({\lambda }_{1})+f\left({\lambda }_{2})+\cdots +f\left({\lambda }_{\ell }), satisfying that 1 = χ p ( λ 1 ) λ 1 + χ p ( λ 2 ) λ 2 + + χ p ( λ ) λ , 1=\frac{{\chi }_{p}\left({\lambda }_{1})}{{\lambda }_{1}}+\frac{{\chi }_{p}\left({\lambda }_{2})}{{\lambda }_{2}}+\cdots +\frac{{\chi }_{p}\left({\lambda }_{\ell })}{{\lambda }_{\ell }}, where χ p {\chi }_{p} is the Legendre symbol modulo prime p p and f ( k ) = k f\left(k)=k or the k k th m m -gonal number with m = 3 m=3 , 4, or 5.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference15 articles.

1. R. L. Graham, A theorem on partitions, J. Aust. Math. Soc. 3 (1963), 435–441.

2. B. Kim, J. Y. Kim, C. G. Lee, S. J. Lee, and P.-S. Park, On the existence of Graham partitions with congruence conditions, Bull. Korean Math. Soc. 59 (2022), no. 1, 15–25, DOI: https://doi.org/10.4134/BKMS.b200730.

3. N. Sloane, The on-line encyclopedia of integer sequences, DOI: http://oeis.org/A051908, Sequence A051908.

4. B. C. Berndt and J. Sohn, Asymptotic formulas for two continued fractions in Ramanujan’s lost notebook, J. Lond. Math. Soc. 65 (2002), no. 2, 271–284, DOI: https://doi.org/10.1112/S0024610701002952.

5. H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematical Society Colloquium Publications, Vol. 53, American Mathematical Society, Providence, 2004.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3