On the well-posedness of differential quasi-variational-hemivariational inequalities

Author:

Cen Jinxia12,Min Chao3,Nguyen Van Thien4,Tang Guo-ji1

Affiliation:

1. Department of Mathematics and Physics, Guangxi University for Nationalities , Nanning 530006 , Guangxi Province , P. R. China

2. Department of Mathematics, Southwest Petroleum University , Chengdu 610500 , P. R. China

3. Department of Mathematics, Southwest Petroleum University , Chengdu , Sichuan 610500 , P. R. China

4. Department of Mathematics, FPT University, Education Zone , Hoa Lac High Tech Park, Km29 Thang Long Highway, Thach That Ward , Hanoi , Vietnam

Abstract

Abstract The goal of this paper is to discuss the well-posedness and the generalized well-posedness of a new kind of differential quasi-variational-hemivariational inequality (DQHVI) in Hilbert spaces. Employing these concepts, we explore the essential relation between metric characterizations and the well-posedness of DQHVI. Moreover, the compactness of the set of solutions for DQHVI is delivered, when problem DQHVI is well-posed in the generalized sense.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference31 articles.

1. J. S. Pang and D. E. Stewart, Differential variational inequalities, Math. Program. 113 (2008), 345–424, 10.1007/s10107-006-0052-x.

2. X. Chen and Z. Wang, Differential variational inequality approach to dynamic games with shared constraints, Math. Program. 146 (2014), 379–408, 10.1007/s10107-013-0689-1.

3. X. Wang, G. J. Tang, X. S. Li, and N. J. Huang, Differential quasi-variational inequalities in finite dimensional spaces, Optimization 64 (2015), no. 4, 895–907, 10.1080/02331934.2013.836646.

4. S. Migórski, Z. H. Liu, and S. D. Zeng, A class of history-dependent differential variational inequalities with application to contact problems, Optimization 69 (2019), no. 4, 743–775, 10.1080/02331934.2019.1647539.

5. X. Chen and Z. Wang, Convergence of regularized time-stepping methods for differential variational inequalities, SIAM J. Optim. 23 (2013), no. 3, 1647–1671, 10.1137/120875223.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3