Solutions to problems about potentially K s,t -bigraphic pair

Author:

Yin Jian-Hua1,Zhang Liang1

Affiliation:

1. School of Science, Hainan University , Haikou 570228 , P.R. China

Abstract

Abstract Let S = ( a 1 , , a m ; b 1 , , b n ) S=\left({a}_{1},\ldots ,{a}_{m};\hspace{0.33em}{b}_{1},\ldots ,{b}_{n}) , where a 1 , , a m {a}_{1},\ldots ,{a}_{m} and b 1 , , b n {b}_{1},\ldots ,{b}_{n} are two nonincreasing sequences of nonnegative integers. The pair S = ( a 1 , , a m ; b 1 , , b n ) S=\left({a}_{1},\ldots ,{a}_{m};\hspace{0.33em}{b}_{1},\ldots ,{b}_{n}) is said to be a bigraphic pair if there is a simple bipartite graph G = ( X Y , E ) G=\left(X\cup Y,E) such that a 1 , , a m {a}_{1},\ldots ,{a}_{m} and b 1 , , b n {b}_{1},\ldots ,{b}_{n} are the degrees of the vertices in X X and Y Y , respectively. In this case, G G is referred to as a realization of S S . Given a bigraphic pair S S , and a complete bipartite graph K s , t {K}_{s,t} , we say that S S is a potentially K s , t {K}_{s,t} -bigraphic pair if some realization of S S contains K s , t {K}_{s,t} as a subgraph (with s s vertices in the part of size m m and t t in the part of size n n ). Ferrara et al. (Potentially H-bigraphic sequences, Discuss. Math. Graph Theory 29 (2009), 583–596) defined σ ( K s , t , m , n ) \sigma \left({K}_{s,t},m,n) to be the minimum integer k k such that every bigraphic pair S = ( a 1 , , a m ; b 1 , , b n ) S=\left({a}_{1},\ldots ,{a}_{m};{b}_{1},\ldots ,{b}_{n}) with σ ( S ) = a 1 + + a m k \sigma \left(S)={a}_{1}+\cdots +{a}_{m}\ge k is a potentially K s , t {K}_{s,t} -bigraphic pair. This problem can be viewed as a “potential” degree sequence relaxation of the (forcible) Turán problem. Ferrara et al. determined σ ( K s , t , m , n ) \sigma \left({K}_{s,t},m,n) for n m 9 s 4 t 4 n\ge m\ge 9{s}^{4}{t}^{4} . In this paper, we further determine σ ( K s , t , m , n ) \sigma \left({K}_{s,t},m,n) for n m s n\ge m\ge s and n + m 2 t 2 + t + s n+m\ge 2{t}^{2}+t+s . As two corollaries, if n m t 2 + t + s 2 n\ge m\ge {t}^{2}+\frac{t+s}{2} or if n m s n\ge m\ge s and n 2 t 2 + t n\ge 2{t}^{2}+t , the values σ ( K s , t , m , n ) \sigma \left({K}_{s,t},m,n) are determined completely. These results give a solution to a problem due to Ferrara et al. and a solution to a problem due to Yin and Wang.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3