Affiliation:
1. School of Science, Hainan University , Haikou 570228 , P.R. China
Abstract
Abstract
Let
S
=
(
a
1
,
…
,
a
m
;
b
1
,
…
,
b
n
)
S=\left({a}_{1},\ldots ,{a}_{m};\hspace{0.33em}{b}_{1},\ldots ,{b}_{n})
, where
a
1
,
…
,
a
m
{a}_{1},\ldots ,{a}_{m}
and
b
1
,
…
,
b
n
{b}_{1},\ldots ,{b}_{n}
are two nonincreasing sequences of nonnegative integers. The pair
S
=
(
a
1
,
…
,
a
m
;
b
1
,
…
,
b
n
)
S=\left({a}_{1},\ldots ,{a}_{m};\hspace{0.33em}{b}_{1},\ldots ,{b}_{n})
is said to be a bigraphic pair if there is a simple bipartite graph
G
=
(
X
∪
Y
,
E
)
G=\left(X\cup Y,E)
such that
a
1
,
…
,
a
m
{a}_{1},\ldots ,{a}_{m}
and
b
1
,
…
,
b
n
{b}_{1},\ldots ,{b}_{n}
are the degrees of the vertices in
X
X
and
Y
Y
, respectively. In this case,
G
G
is referred to as a realization of
S
S
. Given a bigraphic pair
S
S
, and a complete bipartite graph
K
s
,
t
{K}_{s,t}
, we say that
S
S
is a potentially
K
s
,
t
{K}_{s,t}
-bigraphic pair if some realization of
S
S
contains
K
s
,
t
{K}_{s,t}
as a subgraph (with
s
s
vertices in the part of size
m
m
and
t
t
in the part of size
n
n
). Ferrara et al. (Potentially H-bigraphic sequences, Discuss. Math. Graph Theory 29 (2009), 583–596) defined
σ
(
K
s
,
t
,
m
,
n
)
\sigma \left({K}_{s,t},m,n)
to be the minimum integer
k
k
such that every bigraphic pair
S
=
(
a
1
,
…
,
a
m
;
b
1
,
…
,
b
n
)
S=\left({a}_{1},\ldots ,{a}_{m};{b}_{1},\ldots ,{b}_{n})
with
σ
(
S
)
=
a
1
+
⋯
+
a
m
≥
k
\sigma \left(S)={a}_{1}+\cdots +{a}_{m}\ge k
is a potentially
K
s
,
t
{K}_{s,t}
-bigraphic pair. This problem can be viewed as a “potential” degree sequence relaxation of the (forcible) Turán problem. Ferrara et al. determined
σ
(
K
s
,
t
,
m
,
n
)
\sigma \left({K}_{s,t},m,n)
for
n
≥
m
≥
9
s
4
t
4
n\ge m\ge 9{s}^{4}{t}^{4}
. In this paper, we further determine
σ
(
K
s
,
t
,
m
,
n
)
\sigma \left({K}_{s,t},m,n)
for
n
≥
m
≥
s
n\ge m\ge s
and
n
+
m
≥
2
t
2
+
t
+
s
n+m\ge 2{t}^{2}+t+s
. As two corollaries, if
n
≥
m
≥
t
2
+
t
+
s
2
n\ge m\ge {t}^{2}+\frac{t+s}{2}
or if
n
≥
m
≥
s
n\ge m\ge s
and
n
≥
2
t
2
+
t
n\ge 2{t}^{2}+t
, the values
σ
(
K
s
,
t
,
m
,
n
)
\sigma \left({K}_{s,t},m,n)
are determined completely. These results give a solution to a problem due to Ferrara et al. and a solution to a problem due to Yin and Wang.