Affiliation:
1. Department of Quality-oriented Education, Nanjing Vocational College of Information Technology , No. 99 Wenlan Road, Xianlin College Community , Nanjing , Jiangsu , P. R. China
Abstract
Abstract
This paper intend to study the following critical fractional Schrödinger-Kirchhoff-Poisson equations with electromagnetic fields in
R
3
{{\mathbb{R}}}^{3}
:
ε
2
s
M
(
[
u
]
s
,
A
2
)
(
−
Δ
)
A
s
u
+
V
(
x
)
u
+
(
∣
x
∣
2
t
−
3
∗
∣
u
∣
2
)
u
=
f
(
x
,
∣
u
∣
2
)
u
+
∣
u
∣
2
s
∗
−
2
u
,
x
∈
R
3
.
{\varepsilon }^{2s}{\mathfrak{M}}\left({\left[u]}_{s,A}^{2}){\left(-\Delta )}_{A}^{s}u+V\left(x)u+\left(| x\hspace{-0.25em}{| }^{2t-3}\ast | u\hspace{-0.25em}{| }^{2})u=f\left(x,| u\hspace{-0.25em}{| }^{2})u+| u\hspace{-0.25em}{| }^{{2}_{s}^{\ast }-2}u,\hspace{1em}x\in {{\mathbb{R}}}^{3}.
Under suitable assumptions, together with the concentration compactness principle and variational method, we prove that the existence and multiplicity of semiclassical solutions for above problem as
ε
→
0
\varepsilon \to 0
.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献