Affiliation:
1. Department of Mathematics, Hangzhou Dianzi University , Hangzhou 310018 , China
Abstract
Abstract
In this paper, we study the unicity of meromorphic functions concerning differences and small functions and mainly prove two results: 1. Let
f
f
be a transcendental entire function of finite order with a Borel exceptional entire small function
a
(
z
)
a\left(z)
, and let
η
\eta
be a constant such that
Δ
η
2
f
≢
0
{\Delta }_{\eta }^{2}\hspace{0.25em}f\not\equiv 0
. If
Δ
η
2
f
{\Delta }_{\eta }^{2}\hspace{0.25em}f
and
Δ
η
f
{\Delta }_{\eta }\hspace{0.25em}f
share
Δ
η
a
{\Delta }_{\eta }a
CM, then
a
(
z
)
a\left(z)
is a constant
a
a
and
f
(
z
)
=
a
+
B
e
A
z
f\left(z)=a+B{e}^{Az}
, where
A
,
B
A,B
are two nonzero constants; 2. Let
f
f
be a transcendental meromorphic function with
ρ
2
(
f
)
<
1
{\rho }_{2}(f)\lt 1
, let
a
1
{a}_{1}
,
a
2
{a}_{2}
be two distinct small functions of
f
f
, let
L
(
z
,
f
)
L\left(z,f)
be a linear difference polynomial, and let
a
1
≢
L
(
z
,
a
2
)
{a}_{1}\not\equiv L\left(z,{a}_{2})
. If
δ
(
a
2
,
f
)
>
0
\delta \left({a}_{2},f)\gt 0
, and
f
f
and
L
(
z
,
f
)
L\left(z,f)
share
a
1
{a}_{1}
and
∞
\infty
CM, then
L
(
z
,
f
)
−
a
1
f
−
a
1
=
c
,
\frac{L\left(z,f)-{a}_{1}}{f-{a}_{1}}=c,
for some constant
c
≠
0
c\ne 0
. The results improve some results following C. X. Chen and R. R. Zhang [Uniqueness theorems related difference operators of entire functions, Chinese Ann. Math. Ser. A 42 (2021), no. 1, 11–22] and R. R. Zhang, C. X. Chen, and Z. B. Huang [Uniqueness on linear difference polynomials of meromorphic functions, AIMS Math. 6 (2021), no. 4, 3874–3888].
Reference23 articles.
1. W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
2. I. Laine, Nevanlinna Theory and Complex Differential Equations, De Gruyter, Berlin, 1993.
3. C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers Group, Dordrecht, 2003.
4. L. Yang, Value Distribution Theory, Springer-Verlag, Berlin, 1993.
5. Y. H. Li and J. Y. Qiao, The uniqueness of meromorphic functions concerning small functions, Sci. China Ser. A 43 (2000), no. 6, 581–590.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献