An algebraic semigroup method for discovering maximal frequent itemsets

Author:

Liu Jiang1,Li Jing1,Ni Feng1,Xia Xiang1,Li Shunlong1,Dong Wenhui1

Affiliation:

1. Department of Systems Science, University of Shanghai for Science and Technology , Shanghai 200093 , China

Abstract

Abstract Discovering maximal frequent itemsets is an important issue and key technique in many data mining problems such as association rule mining. In the literature, generating maximal frequent itemsets proves either to be NP-hard or to have O ( l 3 4 l ( m + n ) ) O\left({l}^{3}{4}^{l}\left(m+n)) complexity in the worst case from the perspective of generating maximal complete bipartite graphs of a bipartite graph, where m m , n n are the item number and the transaction number, respectively, and l l denotes the maximum of C Ψ ( C ) / ( C + Ψ ( C ) 1 ) | C| | \Psi \left(C)| \hspace{0.1em}\text{/}\hspace{0.1em}\left(| C| +| \Psi \left(C)| -1) , with the maximum taken over all maximal frequent itemsets C C . In this article, we put forward a method for discovering maximal frequent itemsets, whose complexity is O ( 3 m n 2 β + 4 β n ) O\left(3mn{2}^{\beta }+{4}^{\beta }n) , lower than the known complexity both in the worst case, from the perspective of semigroup algebra, where β \beta is the number of items whose support is more than the minimum support threshold. Experiments also show that an algorithm based on the algebraic method performs better than the other three well-known algorithms. Meanwhile, we explore some algebraic properties with respect to items and transactions, prove that the maximal frequent itemsets are exactly the simplified generators of frequent itemsets, give a necessary and sufficient condition for a maximal i + 1 i+1 -frequent itemset being a subset of a closed i i -frequent itemset, and provide a recurrence formula of maximal frequent itemsets.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference22 articles.

1. R. Agrawal, T. Imieliński, and A. Swami, Mining association rules between sets of items in large databases, ACM SIGMOD Record 22 (1993), no. 2, 207–216, https://doi.org/10.1145/170036.170072.

2. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo, Fast Discovery of Association Rules: Advances in Knowledge Discovery and Data Mining, MIT Press, California, 1996, pp. 307–328.

3. J. Han and Y. Fu, Discovery of multiple-level association rules from large databases, in: VLDB ’95 Proceedings of the 21th International Conference on Very Large Data Bases, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1995, pp. 420–431.

4. W. Hwang and D. Kim, Improved association rule mining by modified trimming, in: The Sixth IEEE International Conference on Computer and Information Technology (CIT’06), IEEE Computer Society, Los Alamitos, CA, USA, 2006, pp. 24–24, https://doi.org/10.1109/CIT.2006.101.

5. H. Mannila, H. Toivonen, and A. I. Verkamo, Discovering frequent episodes in sequences, in: Proceedings of First ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), AAAI Press, Palo Alto, CA, USA, 1995, pp. 210–215.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3