Affiliation:
1. School of Education, Lanzhou University of Arts and Science , Lanzhou 730010 , P.R. China
2. Department of Mathematics, Northwest Normal University , Lanzhou , 730070 , P.R. China
Abstract
Abstract
The transition between strong and weak Allee effects in prey provides a simple regime shift in ecology. In this article, we study a discrete predator-prey system with Holling type II functional response and Allee effect. First, the number of fixed points of the system, local stability, and global stability is discussed. The population changes of predator and prey under strong or weak Allee effects are proved using the nullclines and direction field, respectively. Second, using the bifurcation theory, the bifurcation conditions for the system to undergo transcritical bifurcation and Neimark-Sacker bifurcation at the equilibrium point are obtained. Finally, the dynamic behavior of the system is analyzed by numerical simulation of bifurcation diagram, phase diagram, and maximum Lyapunov exponent diagram. The results show that the system will produce complex dynamic phenomena such as periodic state, quasi-periodic state, and chaos.