Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on paracontact geometry

Author:

Li Yanlin1,Dey Santu2,Pahan Sampa3,Ali Akram4

Affiliation:

1. School of Mathematics, Hangzhou Normal University , Hangzhou 311121 , China

2. Department of Mathematics, Bidhan Chandra College , Asansol 713304 , India

3. Department of Mathematics, Mrinalini Datta Mahavidyapith , Kolkata 700 051 , India

4. Department of Mathematics, College of Science, King Khalid University , 61421 Abha , Saudi Arabia

Abstract

Abstract We prove that if an η \eta -Einstein para-Kenmotsu manifold admits a conformal η \eta -Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu metric as a conformal η \eta -Ricci soliton is Einstein if its potential vector field V V is infinitesimal paracontact transformation or collinear with the Reeb vector field. Furthermore, we prove that if a para-Kenmotsu manifold admits a gradient conformal η \eta -Ricci almost soliton and the Reeb vector field leaves the scalar curvature invariant then it is Einstein. We also construct an example of para-Kenmotsu manifold that admits conformal η \eta -Ricci soliton and satisfy our results. We also have studied conformal η \eta -Ricci soliton in three-dimensional para-cosymplectic manifolds.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3