Self-injectivity of semigroup algebras

Author:

Guo Junying1,Guo Xiaojiang2

Affiliation:

1. College of Science and Technology, Jiangxi Normal University , Nanchang , 330022 , China

2. College of Mathematics and Information Science, Jiangxi Normal University , Nanchang , 330022 , China

Abstract

Abstract It is proved that for an IC abundant semigroup (a primitive abundant semigroup; a primitively semisimple semigroup) S and a field K, if K 0[S] is right (left) self-injective, then S is a finite regular semigroup. This extends and enriches the related results of Okniński on self-injective algebras of regular semigroups, and affirmatively answers Okniński’s problem: does that a semigroup algebra K[S] is a right (respectively, left) self-injective imply that S is finite? (Semigroup Algebras, Marcel Dekker, 1990), for IC abundant semigroups (primitively semisimple semigroups; primitive abundant semigroups). Moreover, we determine the structure of K 0[S] being right (left) self-injective when K 0[S] has a unity. As their applications, we determine some sufficient and necessary conditions for the algebra of an IC abundant semigroup (a primitively semisimple semigroup; a primitive abundant semigroup) over a field to be semisimple.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference25 articles.

1. C. Faith, Lectures on injective modules and quotient rings, Lectures Notes in Mathematics No: 49, Springer-Verlag, Berlin, Heidelberg, New York, 1967.

2. D. S. Passman, The Algebraic Structures of Group Algebras, 2nd ed., Robert E. Krieger Publishing, Melbourne, 1985.

3. I. B. Kozuhov, Self-injective semigroup rings of inverse semigroups, Izv. Vyss. Uceb. Zaved. 2 (1981), 46–51. (In Russian).

4. H. Saito, Semigroup rings construction of Frobenius extensions, J. Reine Angew. Math. 324 (1981), 211–220.

5. J. Lawrence, A countable self-injective ring is quasi-Frobenius, Proc. Amer. Math. Soc. 65 (1977), 217–220.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3