Fatigue behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP)

Author:

Li Jinghao,Hunt John F.,Gong Shaoqin,Cai Zhiyong

Abstract

Abstract The static and fatigue bending behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP) has been investigated by four-point bending tests. Fatigue panels and weakened panels (wESCP) with an initial interface defect were manufactured for the fatigue tests. Stress σ vs. number of cycles curves (S-N) were recorded under the different stress levels. The primary failure mode in the fatigue tests was observed in the shear zone (epoxy debonding), which was different from face failure in the pure bending zone for the static bending test. For residual bending (RB) test, epoxy debonding failure occurred between the pure bending zone and shear zone. Macro cracks along the core/face interface developed as the number of cycles increased during the fatigue life. The crack propagation or damage for the panels submitted to fatigue test can be described as a three-stage damage process of first non-linear portion, followed by linear damage accumulation, and lastly non-linear accelerated damage. Bending stiffness degradation at the higher load level had faster degradation during fatigue life. The dissipated energy of the panels was small due to the high stiffness of the materials.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3