Superior cellulose-protective effects of cosolvent during enhanced dissolution in imidazolium ionic liquid

Author:

Tao Juan,Kishimoto Takao,Suzuki Satoshi,Hamada Masahiro,Nakajima Noriyuki

Abstract

Abstract To improve the solubility of cellulose at lower temperatures, several polar organic solvents were examined as cosolvents in imidazolium ionic liquid (IL). All tested cosolvents increased the solubilization efficiency of ILs at lower temperatures. Among these, N-methylimidazole, N-methyl-2-pyrrolidone, and dimethyl sulfoxide (DMSO) were notably efficient; in case of Avicel the solubility was increased, with 12–15% cellulose dissolution in 1-allyl-3-methylimidazolium chloride ([Amim]Cl) at 30°C. IR spectra of the regenerated celluloses from IL/cosolvent systems showed characteristic features of cellulose II and/or amorphous cellulose. Thermogravimetric analyses showed significantly higher thermal stability of regenerated cellulose from [Amim]Cl/DMSO compared with that without DMSO. Moreover, dimethylacetamide (DMAc) increased the solubility of filter paper pulp in 1-ethyl-3-methylimidazolium acetate ([Emim]OAc), with 12% pulp dissolution at 30°C. No decrease in the degree of polymerization (DP) of cellulose was observed with [Emim]OAc/DMAc, whereas 8–9% DP decrease was observed with [Emim]OAc, even at 30°C. These results indicate that some cosolvents including DMSO and DMAc increase solubilization efficiency and have superior cellulose-protective effects during enhanced dissolution in ILs.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3