Mode of action of brown rot decay resistance of thermally modified wood: resistance to Fenton’s reagent

Author:

Hosseinpourpia Reza,Mai Carsten

Abstract

Abstract The resistance of heat treated (HT) wood to brown rot fungi has been investigated, while the role of the Fenton reaction (FR) in the initial phase of degradation was in focus. Micro-veneers made of Scots pine, were HT with various intensities and their mass losses (MLHT) were determined before soaking with a solution of Fenton’s reagent containing Fe ions and hydrogen peroxide. The mass loss of the veneers treated that way (MLFT), their tensile strength loss (TSLFT) and the H2O2 decomposition were observed. The MLFT, TSLFT, and H2O2 loss decreased with increasing MLHT of the veneers. Soaking of the veneers in acetate buffer containing only Fe without H2O2 revealed that the heat treatment (HT) strongly reduces the Fe uptake by the cell walls. FTIR spectroscopy indicated oxidation of the unmodified control veneers but did not reveal predominant decay of cell wall components; the HT veneers were not changed at all due to FR. It was concluded that the reason for the enhanced resistance of HT wood to FR is attributable to hindered diffusion of Fe ions into the wood cell wall.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Reference78 articles.

1. Effects of modification with glutaraldehde on the mechanical properties of wood;Holzforschung,2010

2. Why does acetylation protect wood from microbiological attack? Wood Mater;Sci. Eng.,2009

3. Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood;J. Biotechnol.,1997

4. Why does acetylation protect wood from microbiological attack? Wood Mater;Sci. Eng.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3