Abstract
Abstract
The structure of lignin and suberin, and ferulic acid (FA) content in cork from Quercus suber L. were studied. Extractive-free cork (Cork), suberin, desuberized cork (Corksap), and milled-cork lignins (MCL) from Cork and Corksap were isolated. Suberin composition was determined by GC-MS/FID, whereas the polymers structure in Cork, Corksap, and MCL was studied by Py-TMAH and 2D-HSQC-NMR. Suberin contained 94.4% of aliphatics and 3.2% of phenolics, with 90% of ω-hydroxyacids and α,ω-diacids. FA represented 2.7% of the suberin monomers, overwhelmingly esterified to the cork matrix. Py-TMAH revealed significant FA amounts in all samples, with about 3% and 6% in cork and cork lignins, respectively. Py-TMAH and 2D-HSQC-NMR demonstrated that cork lignin is a G-lignin (>96% G units), with a structure dominated by β–O–4′ alkyl-aryl ether linkages (80% and 77% of all linkages in MCL and MCLsap, respectively), followed by phenylcoumarans (18% and 20% in MCL and MCLsap, respectively), and smaller amounts of resinols (ca. 2%) and dibenzodioxocins (1%). HSQC also revealed that cork lignin is heavily acylated (ca. 50%) exclusively at the side-chain γ-position. Ferulates possibly have an important function in the chemical assembly of cork cell walls with a cross-linking role between suberin, lignin and carbohydrates.
Reference122 articles.
1. Identification of anArabidopsisferuloyl - coenzyme A transferase required for suberin synthesis;Molina;Plant Physiol,2009
2. del González Thermally assisted hydrolysis and alkylation of lignins in the presence of tetra - alkylammonium hydroxides;Martín;Anal Appl Pyrol,1995
3. Polyesters in higher plants;Kolattukudy;Adv Biochem Eng Biotechnol,2001
4. del Highly acylated acetylated orp coumaroylated native lignins from diverse herbaceous plants;Rencoret;Food Chem,2008
5. Hydroxycinnamates in suberin formation;Graça;Rev,2010
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献