Infrared, 1H and 13C NMR Spectral Studies on Di- and Tri-substituted N-Aryl Amides, 2,6-X2C6H3NHCOCH3 – IXi and 2,4,6-X3C6H2NHCOCH3 – IXi (X = Cl or CH3 and I = 0, 1, 2 or 3)

Author:

Gowda B. Thimme1,Usha K. M.1,Jyothi K.1

Affiliation:

1. Department of Post-Graduate Studies and Research in Chemistry, Mangalore University, Mangalagangothri-574 199, Mangalore, India

Abstract

Several di- and tri-substituted amides of the general formula, 2,6-X2C6H3NHCOCH3−iXi and 2,4,6-X3C6H2NHCOCH3−iXi (X = Cl or CH3 and i = 0, 1, 2, or 3) are prepared, characterised, and their infrared spectra in the solid state and 1H and 13C NMR spectra in solution are studied. The C=O stretching vibrations of N-(2,6-dichlorophenyl)- and N-(2,6-dimethylphenyl)-amides appear as strong absorptions in the ranges 1707 - 1658 cm−1 and 1700 - 1647 cm−1, respectively, while the N-H stretching vibrations of N-(2,6-dichlorophenyl)- and N-(2,6-dimethylphenyl)-amides appear as strong vibrations in the ranges 3271 - 3209 cm−1 and 3285 - 3214 cm−1, respectively. The N-H stretching vibrations of N-(2,4,6-trichlorophenyl)- and N-(2,4,6-trimethylphenyl)- amides also appear as strong absorptions in the ranges 3370 - 3212 and 3283 - 3225 cm−1, respectively, while those of the C=O vibrations appear in the ranges 1688 - 1617 and 1704 - 1647 cm−1. The analysis of the C=O and N-H absorption frequencies of all amides of the general formula XiC6H5iNHCOCH3−iXi (where X = Cl or CH3, and i = 0, 1, 2 or 3) indicates that their variations do not show regular trends with substitution either in the phenyl ring or in the side chain. The chemical shifts of both the aromatic protons and the aromatic carbons of all the amides are calculated in two ways, either by adding the incremental shifts due to -COCH3−iXi groups and the substituents in the benzene ring to the chemical shifts of the corresponding aromatic protons or carbons of the parent aniline, or by adding the incremental shifts due to -NHCOCH3−iXi groups and the substituents in the benzene ring to the chemical shift of the benzene proton or carbon. The calculated chemical shifts of the aromatic protons and carbons of all the substituted amides by both methods lead to almost the same values in most cases and agree well with the observed chemical shifts, indicating that the principle of additivity of the substituent effects is valid in these compounds.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3