Affiliation:
1. Department of Computer Science & Engineering , Dr. B R Ambedkar National Institute of Technology , Jalandhar , Punjab , India
Abstract
Abstract
Free-space optical (FSO) wireless sensor network is rapidly growing for underwater communication applications. However, the high-energy loss and propagation distance are the key concerns during data transmission in SDN-enabled underwater wireless sensor networks (UWSNs). In addition, long-distance free-space data transmission in UWSNs relies heavily on FSO communication. Thus, FSO communication is integrated with SDN-enabled UWSNs to maximizing the network lifespan called SDN-enabled free-space optical underwater wireless sensor networks (FSO-UWSNs). Furthermore, clustering and routing can effectively balance the network load for energy-efficient data delivery in SDN-enabled FSO-UWSNs. However, choosing the optimal control nodes (CNs) in clustering is considered as an NP-hard problem. Accordingly, self-adaptive genetic approach-based particle swarm optimization (SAGA-PSO) is proposed as a cluster-based routing to optimize the CNs in heterogeneous SDN-enabled FSO-UWSNs. The proposed hybrid model of metaheuristics and genetic mutation, in which the native PSO is amended with the self-adaptive inertia weights and genetic mutation operation to identify the CNs based on genetic diversity dynamically. In addition, a novel fitness function is proposed to balance the cluster size by considering the most significant parameters like energy and distance of network devices. The SAGA-PSO is simulated using the ns-3 simulator, and SDN policies are controlled via the ONOS controller. Moreover, the proposed nature-inspired SAGA-PSO approach outperforms the existing state of arts by considering the performance metrics such as; alive nodes, stability period, average residual energy, the packet transmitted to CS, average delay, and fitness value.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献